Skip to main content

Advertisement

Log in

Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A new fragment picker has been developed for CS-Rosetta that combines beneficial features of the original fragment picker, MFR, used with CS-Rosetta, and the fragment picker, NNMake, that was used for purely sequence based fragment selection in the context of ROSETTA de-novo structure prediction. Additionally, the new fragment picker has reduced sensitivity to outliers and other difficult to match data points rendering the protocol more robust and less likely to introduce bias towards wrong conformations in cases where data is bad, missing or inconclusive. The fragment picker protocol gives significant improvements on 6 of 23 CS-Rosetta targets. An independent benchmark on 39 protein targets, whose NMR data sets were published only after protocol optimization had been finished, also show significantly improved performance for the new fragment picker (van der Schot et al. in J Biomol NMR, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Delaglio F, Kontaxis G, Bax A (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122:2142–2143

    Article  Google Scholar 

  • Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D (2011) Generalized fragment picking in Rosetta: design, protocols and applications. PLoS ONE 6:e23294

    Article  Google Scholar 

  • Handl J, Knowles J, Vernon R, Baker D, Lovell SC (2011) The dual role of fragments in fragment-assembly methods for de novo protein structure prediction. Proteins 80:490–504

    Article  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  Google Scholar 

  • Kalev I, Habeck M (2011) HHfrag: HMM-based fragment detection using HHpred. Bioinformatics 27:3110–3116

    Article  Google Scholar 

  • Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans M, Hughey R (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53(Suppl 6):491–496

    Article  Google Scholar 

  • Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in de novo protein structure prediction. J Mol Biol 393:249–260

    Article  Google Scholar 

  • Kontaxis G, Delaglio F, Bax A (2005) Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Meth Enzymol 394:42–78

    Article  Google Scholar 

  • Kraulis PJ, Jones TA (1987) Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Proteins 2:188–201

    Article  Google Scholar 

  • Lange OF, Baker D (2012) Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80:884–895

    Article  Google Scholar 

  • Lange OF, Rossi P, Sgourakis NG, Song Y, Lee H-W, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT et al (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci USA 109:10873–10878

    Article  ADS  Google Scholar 

  • Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Meth Enzymol 487:545–574

    Article  Google Scholar 

  • Meiler J, Müller M, Zeidler A, Schmäschke F (2001) Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J Mol 7(9):360–369

    Google Scholar 

  • Raman S, Huang YJ, Mao B, Rossi P, Aramini JM, Liu G, Montelione GT, Baker D (2010a) Accurate automated protein nmr structure determination using unassigned NOESY data. J Am Chem Soc 132:202–207

    Article  Google Scholar 

  • Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini JM, Liu G, Ramelot TA, Eletsky A, Szyperski T et al (2010b) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018

    Article  ADS  Google Scholar 

  • Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Meth Enzymol 383:66–93

    Article  Google Scholar 

  • Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P et al (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236

    Article  Google Scholar 

  • Schmitz C, Vernon R, Otting G, Baker D, Huber T (2012) Protein structure determination from pseudocontact shifts using ROSETTA. J Mol Biol 416:668–677

    Article  Google Scholar 

  • Sgourakis NG, Lange OF, DiMaio F, Andre I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D (2011) Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J Am Chem Soc 133:6288–6298

    Article  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA plus: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22

    Article  Google Scholar 

  • Shen Y, Lange OF, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78

    Article  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  Google Scholar 

  • van der Schot G, Zhang Z, Vernon R, Shen Y, Vranken WF, Baker D, Bonvin AMJJ, Lange OF (2013) Improving 3D structure prediction from chemical shift data. J Biomol NMR. doi:10.1007/s10858-013-9762-6

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502

    Article  Google Scholar 

Download references

Acknowledgments

Approximately half a million CPU hours donated from the public to the Rosetta@Home project on BOINC made this project possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver F. Lange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernon, R., Shen, Y., Baker, D. et al. Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker. J Biomol NMR 57, 117–127 (2013). https://doi.org/10.1007/s10858-013-9772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9772-4

Keywords

Navigation