Skip to main content
Log in

NMR structure note: the structure of human calcium-bound S100A11

  • NMR structure note
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Cornilescu G, Delaglio F et al (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302

    Article  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  Google Scholar 

  • Dempsey AC, Walsh MP et al (2003) Unmasking the annexin I interaction from the structure of Apo-S100A11. Structure 11(7):887–897

    Article  Google Scholar 

  • Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36(12):625–632

    Article  Google Scholar 

  • He H, Li J et al (2009) S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 55(3):117–126

    Article  Google Scholar 

  • Inada H, Naka M et al (1999) Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochem Biophys Res Commun 263(1):135–138

    Article  Google Scholar 

  • Jaiswal JK (2001) Calcium–how and why? J Biosci 26(3):357–363

    Article  Google Scholar 

  • Koch M, Chitayat S et al (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18(10):1342–1352

    Article  Google Scholar 

  • Koradi R, Billeter M et al. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55, 29–32

    Google Scholar 

  • Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  Google Scholar 

  • Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci (Schol Ed) 3:1232–1262

    Article  Google Scholar 

  • Leclerc E, Fritz G et al (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793(6):993–1007

    Article  Google Scholar 

  • Ohuchida K, Mizumoto K et al (2006) S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clin Cancer Res 12(18):5417–5422

    Article  Google Scholar 

  • Rehman I, Azzouzi AR et al (2004) Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions. Hum Pathol 35(11):1385–1391

    Article  Google Scholar 

  • Rety S, Osterloh D et al (2000) Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 8(2):175–184

    Article  Google Scholar 

  • Rezvanpour A, Shaw GS (2009) Unique S100 target protein interactions. Gen Physiol Biophys 28 Spec No Focus:F39–46

  • Rieping W, Habeck M et al (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23(3):381–382

    Article  Google Scholar 

  • Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4):134–140

    Google Scholar 

  • Sharma D, Rajarathnam K (2000) 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR 18(2):165–171

    Article  Google Scholar 

  • Skelton NJ, Kordel J et al (1994) Signal transduction versus buffering activity in Ca(2+)-binding proteins. Nat Struct Biol 1(4):239–245

    Article  Google Scholar 

  • Smith SP, Shaw GS (1998) A change-in-hand mechanism for S100 signalling. Biochem Cell Biol 76(2–3):324–333

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  Google Scholar 

  • Yammani RR (2012) S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta 1822(4):600–606

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Science Council (NSC) of the Republic of China (NSC 100-2113-M-007-012-MY3). The NMR spectra were obtained at the Instrumentation Center at National Tsing Hua University (NTHU) and the High Field Nuclear Magnetic Resonance Center (HFNMRC in Academia Sinica) at the Core Facility for Protein Structural Analysis supported by National Core Facility Program for Biotechnology supported by National Science Council of the Republic of China (Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, KW., Chang, YM. & Yu, C. NMR structure note: the structure of human calcium-bound S100A11. J Biomol NMR 54, 211–215 (2012). https://doi.org/10.1007/s10858-012-9661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9661-2

Keywords

Navigation