Skip to main content
Log in

Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include 15N T 1 relaxation times measured at two different magnetic fields as well as 1H–15N dipole, 15N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T 2 in the solid-state. In addition, global order parameters are included from a 1H,15N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore–Lipari–Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10° for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken α-spectrin SH3 domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multidimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194:16–24

    Article  ADS  Google Scholar 

  • Agarwal V, Xue Y, Skrynnikov NR, Reif B (2008) Protein side-chain dynamics as observed by solution- and solid-state NMR: a similarity revealed. J Am Chem Soc 130:16611–16621

    Article  Google Scholar 

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974

    Article  Google Scholar 

  • Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Bruschweiler R, Blackledge M (2005) Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc Natl Acad Sci USA 102:13885–13890

    Article  ADS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Academic Press, San Diego

    Google Scholar 

  • Chekmenev EY, Zhang Q, Waddell KW, Mashuta MS, Wittebort RJ (2004) 15N chemical shielding in glycyl tripeptides: measurement by solid-state NMR and correlation with X-ray structure. J Am Chem Soc 126:379–384

    Article  Google Scholar 

  • Chevelkov V, Reif B (2008) TROSY effects in MAS solid-state NMR. Concepts NMR 32A:143–156

    Google Scholar 

  • Chevelkov V, van Rossum BJ, Castellani F, Rehbein K, Diehl A, Hohwy M, Steuernagel S, Engelke F, Oschkinat H, Reif B (2003) 1H detection in MAS solid state NMR spectroscopy employing pulsed field gradients for residual solvent suppression. J Am Chem Soc 125:7788–7789

    Article  Google Scholar 

  • Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B (2005) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. J Biomol NMR 31:295–310

    Article  Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultra-high resolution in proton solid-state NMR at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Article  Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2007a) Quantitative measurement of differential 15N-Hα/β T2 relaxation times in a perdeuterated protein by MAS solid-state NMR spectroscopy. Magn Res Chem 45:S156–S160

    Article  Google Scholar 

  • Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007b) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200

    Article  Google Scholar 

  • Chevelkov V, Zhuravleva AV, Xue Y, Reif B, Skrynnikov NR (2007c) Combined analysis of 15N relaxation data from solid- and solution-state NMR spectroscopy. J Am Chem Soc 129:12594–12595

    Article  Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2008) Measurement of 15N–T1 relaxation rates in a perdeuterated protein by MAS solid-state NMR spectroscopy. J Chem Phys 128:052316

    Article  ADS  Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009) Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. J Am Chem Soc (submitted)

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the Simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  • Cole HBR, Torchia DA (1991) An NMR-study of the backbone dynamics of Staphylococcal nuclease in the crystalline state. Chem Phys 158:271–281

    Article  Google Scholar 

  • Dvinskikh SV, Zimmermann H, Maliniak A, Sandstrom D (2003) Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences. J Magn Reson 164:165–170

    Article  ADS  Google Scholar 

  • Dvinskikh SV, Zimmermann H, Maliniak A, Sandström D (2005) Heteronuclear dipolar recoupling in solid-state nuclear magnetic resonance by amplitude-, phase-, and frequency-modulated Lee–Goldburg cross-polarization. J Chem Phys 122:044512

    Article  ADS  Google Scholar 

  • Eichmüller C, Skrynnikov NR (2005) A new amide proton R-1 rho experiment permits accurate characterization of microsecond time-scale conformational exchange. J Biomol NMR 32:281–293

    Article  Google Scholar 

  • Eichmüller C, Skrynnikov NR (2007) Observation of mu s time-scale protein dynamics in the presence of Ln(3+)stop ions: application to the N-terminal domain of cardiac troponin C. J Biomol NMR 37:79–95

    Article  Google Scholar 

  • Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295:1520–1523

    Article  ADS  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Gurmukh S, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–330

    Article  ADS  Google Scholar 

  • Fushman D, Cowburn D (1998) Model-independent analysis of 15N chemical shift anisotropy from NMR relaxation data. Ubiquitin as a test example. J Am Chem Soc 120:7109–7110

    Article  Google Scholar 

  • Giraud N, Böckmann A, Lesage A, Penin F, Blackledge M, Emsley L (2004) Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J Am Chem Soc 126:11422–11423

    Article  Google Scholar 

  • Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201

    Article  Google Scholar 

  • Giraud N, Sein J, Pintacuda G, Böckmann A, Lesage A, Blackledge M, Emsley L (2006) Observation of heteronuclear overhauser effects confirms the 15N–1H dipolar relaxation mechanism in a crystalline protein. J Am Chem Soc 128:12398–12399

    Article  Google Scholar 

  • Giraud N, Blackledge M, Böckmann A, Emsley L (2007) The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times. J Magn Reson 184:51–61

    Article  ADS  Google Scholar 

  • Grey MJ, Tang YF, Alexov E, McKnight CJ, Raleigh DP, Palmer AG (2006) Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 355:1078–1094

    Article  Google Scholar 

  • Hall JB, Fushman D (2006) Variability of the N-15 chemical shielding tensors in the B3 domain of protein G from N-15 relaxation measurements at several fields. Implications for backbone order parameters. J Am Chem Soc 128:7855–7870

    Article  Google Scholar 

  • Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc Natl Acad Sci USA 105:6284–6289

    Article  ADS  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  ADS  Google Scholar 

  • Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209

    Article  Google Scholar 

  • Hologne M, Chen Z, Reif B (2006a) Characterization of dynamic processes using deuterium in uniformly 2H, 13C, 15N enriched peptides by MAS solid-state NMR. J Magn Res 179:20–28

    Article  ADS  Google Scholar 

  • Hologne M, Chevelkov V, Reif B (2006b) Deuteration of peptides and proteins in MAS solid-state NMR. Prog NMR Spect 48:211–232

    Article  Google Scholar 

  • Hoogstraten CG, Wank JR, Pardi A (2000) Active site dynamics in the lead-dependent ribozyme. Biochemistry 39:9951–9958

    Article  Google Scholar 

  • Huster D, Xiao LS, Hong M (2001) Solid-state NMR investigation of the dynamics of the soluble and membrane-bound colicin Ia channel-forming domain. Biochemistry 40:7662–7674

    Article  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  ADS  Google Scholar 

  • Lakomek NA, Fares C, Becker S, Carlomagno T, Meiler J, Griesinger C (2005) Side-chain orientation and hydrogen-bonding imprint supra-tauc motion on the protein backbone of ubiquitin. Angew Chem Int Ed 117:7954–7956

    Article  Google Scholar 

  • Lange OF, Lakomek N-A, Fares C, Schroeder GF, Walter KFA, Becker S, Meiler J, Grubmueller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  ADS  Google Scholar 

  • Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93

    Article  ADS  Google Scholar 

  • Lipari G, Szabo A (1981) Pade approximants to correlation-functions for restricted rotational diffusion. J Chem Phys 75:2971–2976

    Article  ADS  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Lorieau JL, McDermott AE (2006) Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. J Am Chem Soc 128:11505–11512

    Article  Google Scholar 

  • Lorieau JL, Day LA, McDermott AE (2008) Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. Proc Natl Acad Sci USA 105:10366–10371

    Article  ADS  Google Scholar 

  • Mack JW, Usha MG, Long J, Griffin RG, Wittebort RJ (2000) Backbone motions in a crystalline protein from field-dependent H-2-NMR relaxation and line-shape analysis. Biopolymers 53:9–18

    Article  Google Scholar 

  • Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316

    Article  ADS  Google Scholar 

  • Martinez JC, Pisabarro T, Serrano L (1998) Obligatory steps in protein folding and the conformational diversity of the transition state. Nat Struct Biol 5:721–729

    Article  Google Scholar 

  • Palmer-III AG, Williams J, McDermott AE (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  Google Scholar 

  • Pauli J, Van Rossum B-J, Förster H, De Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D-RFDR spectra of the a-spectrin SH3 domain. J Magn Reson 143:411–416

    Article  ADS  Google Scholar 

  • Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31

    Article  Google Scholar 

  • Reif B, Griffin RG (2003) 1H detected 1H, 15N correlation spectroscopy in rotating solids. J Magn Reson 160:78–83

    Article  ADS  Google Scholar 

  • Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) 1H–1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327

    Article  ADS  Google Scholar 

  • Reif B, Xue Y, Agarwal V, Pavlova MS, Hologne M, Diehl A, Ryabov YE, Skrynnikov NR (2006) Protein side-chain dynamics observed by solution- and solid-state NMR: comparative analysis of methyl 2H relaxation data. J Am Chem Soc 128:12354–12355

    Article  Google Scholar 

  • Sackewitz M, Scheidt HA, Lodderstedt G, Schierhorn A, Schwarz E, Huster D (2008) Structural and dynamical characterization of fibrils from a disease-associated alanine expansion domain using proteolysis and solid-state NMR spectroscopy. J Am Chem Soc 130:7172–7173

    Article  Google Scholar 

  • Skrynnikov NR (2007) Asymmetric doublets in MAS NMR: coherent and incoherent mechanisms. Magn Res Chem 45:S161–S173

    Article  Google Scholar 

  • Tjandra N, Szabo A, Bax A (1996) Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J Am Chem Soc 118:6986–6991

    Article  Google Scholar 

  • Torchia DA, Szabo A (1982) Spin-lattice relaxation in solids. J Magn Reson 49:107–121

    Google Scholar 

  • Vallurupalli P, Hansen DF, Kay LE (2008) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc Natl Acad Sci USA 105:11766–11771

    Article  ADS  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

  • Williams JC, McDermott AE (1995) Dynamics of the flexible loop of triosephosphate isomerase—the loop motion is not ligand-gated. Biochemistry 34:8309–8319

    Article  Google Scholar 

  • Wu XL, Zilm KW (1993) Cross-polarization with high-speed magic-angle spinning. J Magn Reson A 104:154–165

    Article  Google Scholar 

  • Wylie BJ, Franks WT, Rienstra CM (2006) Determinations of N-15 chemical shift anisotropy magnitudes in a uniformly N-15, C-13-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. J Phys Chem B 110:10926–10936

    Article  Google Scholar 

  • Wylie BJ, Sperling LJ, Frericks HL, Shah GJ, Franks WT, Rienstra CM (2007) Chemical-shift anisotropy measurements of amide and carbonyl resonances in a microcrystalline protein with slow magic-angle spinning NMR spectroscopy. J Am Chem Soc 129:5318–5319

    Article  Google Scholar 

  • Xu J, Xue Y, Skrynnikov NR (2009) Detection of nanosecond time scale side-chain jumps in water/glycerol solvent. J Biomol NMR (in press) (topical issue on dynamics)

  • Yao L, Vögeli B, Ying J, Bax A (2008) NMR determination of amide N–H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130:16518–16520

    Article  Google Scholar 

  • Zeeb M, Jacob MH, Schindler T, Balbach J (2003) N-15 relaxation study of the cold shock protein CspB at various solvent viscosities. J Biomol NMR 27:221–234

    Article  Google Scholar 

  • Zhang Q, Sun XY, Watt ED, Al-Hashimi HM (2006) Resolving the motional modes that code for RNA adaptation. Science 311:653–656

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Nikolai Skrynnikov for many stimulating discussions. This work was supported by the Leibniz-Gemeinschaft and the DFG (grants Re1435, SFB 449, SFB 740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevelkov, V., Fink, U. & Reif, B. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45, 197–206 (2009). https://doi.org/10.1007/s10858-009-9348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9348-5

Keywords

Navigation