Skip to main content
Log in

Sensitivity-optimized experiment for the measurement of residual dipolar couplings between amide protons

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

High signal to noise is a necessity for the quantification of NMR spectral parameters to be translated into accurate and precise restraints on protein structure and dynamics. An important source of long-range structural information is obtained from 1H–1H residual dipolar couplings (RDCs) measured for weakly aligned molecules. For sensitivity reasons, such measurements are generally performed on highly deuterated protein samples. Here we show that high sensitivity is also obtained for protonated protein samples if the pulse schemes are optimized in terms of longitudinal relaxation efficiency and J-mismatch compensated coherence transfer. The new sensitivity-optimized quantitative J-correlation experiment yields important signal gains reaching factors of 1.5 to 8 for individual correlation peaks when compared to previously proposed pulse schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson P, Weigelt J, Otting G (1998) Spin-state selection filters for the measurement of heteronuclear one-bond coupling constants. J Biomol NMR 12:435–441

    Article  Google Scholar 

  • Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647

    Article  ADS  Google Scholar 

  • Bax A, Vuister GW, Grzesiek S, Delaglio F, Wang AC, Tschudin R, Zhu G (1994) Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239, Pt C:79–105

    Google Scholar 

  • Beraud S, Bersch B, Brutscher B, Gans P, Barras F, Blackledge M (2002) Direct structure determination using residual dipolar couplings: reaction-site conformation of methionine sulfoxide reductase in solution. J Am Chem Soc 124:13709–13715

    Article  Google Scholar 

  • Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson 46:23–61

    Article  Google Scholar 

  • Boisbouvier J, Delaglio F, Bax A (2003) Direct observation of dipolar couplings between distant protons in weekly aligned nucleic acids. Proc Natl Acad Sci USA 100:11333–11338

    Article  ADS  Google Scholar 

  • Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Brüschweiler R, Blackledge M (2005) Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc Natl Acad Sci USA 102:13885–13890

    Article  ADS  Google Scholar 

  • Bouvignies G, Meier S, Grzesiek S, Blackledge M (2006) Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media. Angew Chem Int Ed Engl 45:8166–8169

    Article  Google Scholar 

  • Diercks T, Daniels M, Kaptein R (2005) Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J Biomol NMR 33:243–259

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  • Hus JC, Marion D, Blackledge M (2001) Determination of protein backbone structure using only residual dipolar couplings. J Am Chem Soc 123:1541–1542

    Article  Google Scholar 

  • Kontaxis G, Delaglio F, Bax A (2005) Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Methods Enzymol 394:42–78

    Article  Google Scholar 

  • Kupce E, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson B 106:300–303

    Article  Google Scholar 

  • Lakomek NA, Fares C, Becker S, Carlomagno T, Meiler J, Griesinger C (2005) Side-chain orientation and hydrogen-bonding imprint supra-tau(c) motion on the protein backbone of ubiquitin. Angew Chem Int Ed Engl 44:7776–7778

    Article  Google Scholar 

  • Meier S, Haussinger D, Jensen P, Rogowski M, Grzesiek S (2003) High-accuracy residual 1HN–13C and 1HN–1HN dipolar couplings in perdeuterated proteins. J Am Chem Soc 125:44–45

    Article  Google Scholar 

  • Meiler J, Prompers JJ, Peti W, Griesinger C, Brüschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098–6107

    Article  Google Scholar 

  • Nielsen NC, Bildsoe H, Jakobsen HJ, Sorensen OW (1989) Composite refocusing sequences and their application for sensitivity enhancement and multiplicity filtration in INEPT and 2D correlation spectroscopy. J Magn Reson 85:359–380

    Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  Google Scholar 

  • Schanda P, Brutscher B (2006) Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR. J Magn Reson 178:334–339

    Article  ADS  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronculear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  Google Scholar 

  • Schanda P, Forge V, Brutscher B (2006a) HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn Reson Chem 44:S177–S184

    Article  Google Scholar 

  • Schanda P, van Melckebeke H, Brutscher B (2006b) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Sibille N, Blackledge M, Brutscher B, Coves J, Bersch B (2005) Solution structure of the sulfite reductase flavodoxin-like domain from Escherichia coli. Biochemistry 44:9086–9095

    Article  Google Scholar 

  • Smith MA, Hu H, Shaka AJ (2001) Improved broadband inversion performance for NMR in liquids. J Magn Reson 151:269–283

    Article  ADS  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Wimperis S, Bodenhausen G (1986) Heteronuclear coherence transfer over a range of coupling constants. A broadband-INEPT experiment. J Magn Reson 69:264–282

    Google Scholar 

  • Wu ZR, Bax A (2002) Measurement of long-range 1H–1H dipolar couplings in weakly aligned proteins. J Am Chem Soc 124:9672–9673

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commissariat à l’Energie Atomique, the Centre National de la Recherche Scientifique, the French Research Agency (ANR), Human Frontier Science Program Organization and the European Commission (EU-NMR). P.S. and R.S. acknowledge support from the French ministry of education, research, and technology. We thank Beate Bersch, Isabel Ayala, and Jacques Covès (IBS Grenoble) for the preparation of the isotope-labeled protein samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jérôme Boisbouvier or Bernhard Brutscher.

Additional information

Paul Schanda and Ewen Lescop contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schanda, P., Lescop, E., Falge, M. et al. Sensitivity-optimized experiment for the measurement of residual dipolar couplings between amide protons. J Biomol NMR 38, 47–55 (2007). https://doi.org/10.1007/s10858-006-9138-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9138-2

Keywords

Navigation