Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis

Abstract

In this study, porous bioglass/gelatin/alginate bone tissue engineering scaffolds were fabricated by three-dimensional printing. The compressive strength and in vitro biomineralization properties of the bioglass–gelatin–alginate scaffolds (BG/Gel/SA scaffolds) were significantly improved with the increase of bioglass content until 30% weight percentage followed by a rapid decline in strength. In addition, the cells attach and spread on the BG/Gel/SA scaffolds surfaces represents good adhesion and biocompatibility. Furthermore, the cells (rat bone marrow mesenchymal stem cells, mBMSCs) proliferation and osteogenic differentiation on the BG/Gel/SA scaffolds were also promoted with the increase of bioglass content. Overall, the adding of bioglass in Gel/SA scaffolds promotes mechanical strength and in vitro osteogenic properties and the 30 BG scaffold (30%wt BG) has potential applications in bone tissue engineering and bone regenerative repair because of good compressive strength, biocompatibility, and in vitro osteogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Huang G, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev. 2017;117:12764–850.

    CAS  Article  Google Scholar 

  2. 2.

    Inzana JA, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–34.

    CAS  Article  Google Scholar 

  3. 3.

    Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl. 2015;48:651–62.

    CAS  Article  Google Scholar 

  4. 4.

    Zhong Y, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials. 2016;84:250–61.

    CAS  Article  Google Scholar 

  5. 5.

    Kim E, et al. Spontaneous bone regeneration after surgical extraction of a horizontally impacted mandibular third molar: a retrospective panoramic radiograph analysis. Maxillofac Plast Reconstr Surg. 2019;41:4.

    Article  Google Scholar 

  6. 6.

    Chansoria P, et al. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication. 2019;11:035015.

    CAS  Article  Google Scholar 

  7. 7.

    Khan N, et al. Experimental and mechanism study: partially hydrolyzed polyacrylamide gel degradation and deplugging via ultrasonic waves and chemical agents. Ultrason Sonochem. 2019;56:350–60.

    CAS  Article  Google Scholar 

  8. 8.

    Ambekar RS, Kandasubramanian B. Progress in the advancement of porous biopolymer scaffold: tissue engineering application. Ind Eng Chem Res. 2019;58:6163–94.

    CAS  Article  Google Scholar 

  9. 9.

    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    CAS  Article  Google Scholar 

  10. 10.

    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    CAS  Article  Google Scholar 

  11. 11.

    Hong S, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater. 2015;27:4035–40.

    CAS  Article  Google Scholar 

  12. 12.

    Motwani SK, et al. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.

    CAS  Google Scholar 

  13. 13.

    Zhou Z, et al. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci Part A. 2014;51:318–25.

    CAS  Article  Google Scholar 

  14. 14.

    Li L, et al. 3D-printed ternary SiO2CaO P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceram Int. 2019;45:10997–1005.

    CAS  Article  Google Scholar 

  15. 15.

    Fiorilli S, et al. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26:5346.

    Article  CAS  Google Scholar 

  16. 16.

    Hench LL. The future of bioactive ceramics. J Mater Sci Mater Med. 2015;26:86.

    Article  CAS  Google Scholar 

  17. 17.

    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang Y, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale. 2015;7:19207–21.

    CAS  Article  Google Scholar 

  19. 19.

    Koudehi MF, et al. Preparation and evaluation of novel nano-bioglass/gelatin conduit for peripheral nerve regeneration. J Mater Sci Mater Med. 2014;25:363–73.

    CAS  Article  Google Scholar 

  20. 20.

    Luo H, et al. Constructing a highly bioactive 3D nanofibrous bioglass scaffold via bacterial cellulose-templated sol-gel approach. Mater Chem Phys. 2016;176:1–5.

    CAS  Article  Google Scholar 

  21. 21.

    Navarro M, et al. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials. 2004;25:4233–41.

    CAS  Article  Google Scholar 

  22. 22.

    Gloria A, et al. From 3D hierarchical scaffolds for tissue engineering to advanced hydrogel-based and complex devices for in situ cell or drug release. Procedia CIRP. 2016;49:72–5.

    Article  Google Scholar 

  23. 23.

    Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–88.

    CAS  Article  Google Scholar 

  24. 24.

    Sun JY, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133–6.

    CAS  Article  Google Scholar 

  25. 25.

    Du JK, et al. Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol A. Appl Catal B: Environ. 2016;184:132–41.

    CAS  Article  Google Scholar 

  26. 26.

    Puurunen RL. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys. 2005;97:52.

    Article  CAS  Google Scholar 

  27. 27.

    Zhang Y, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

    Article  CAS  Google Scholar 

  28. 28.

    Wang HY, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater. 2015;27:3717–36.

    CAS  Article  Google Scholar 

  29. 29.

    Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    CAS  Article  Google Scholar 

  30. 30.

    Xu Z, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano. 2012;6:7103–13.

    CAS  Article  Google Scholar 

  31. 31.

    Liu JC, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater. 2010;20:4175–81.

    CAS  Article  Google Scholar 

  32. 32.

    Xing RT, et al. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater. 2016;28:3669–76.

    CAS  Article  Google Scholar 

  33. 33.

    Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    CAS  Article  Google Scholar 

  34. 34.

    Ahmed J, et al. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll. 2017;71:141–8.

    CAS  Article  Google Scholar 

  35. 35.

    Misra SK, et al. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials. 2010;31:2806–15.

    CAS  Article  Google Scholar 

  36. 36.

    Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169:1–15.

    CAS  Article  Google Scholar 

  37. 37.

    Wu SL, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R: Rep. 2014;80:1–36.

    Article  Google Scholar 

  38. 38.

    Zhu L-y, et al. Degradation characteristics of HAP/CPP/PLLA nanometer composite for scaffold of osteo-tissue engineering. J Lanzhou Univ Technol. 2012;38:10–4.

    CAS  Google Scholar 

  39. 39.

    Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.

    CAS  Article  Google Scholar 

  40. 40.

    Yoshimoto H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.

    CAS  Article  Google Scholar 

  41. 41.

    De Yoreo JJ, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science. 2015;349:10.

    Article  CAS  Google Scholar 

  42. 42.

    Nudelman F, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004–9.

    CAS  Article  Google Scholar 

  43. 43.

    Bleek K, Taubert A. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater. 2013;9:6283–321.

    CAS  Article  Google Scholar 

  44. 44.

    Yao QQ, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–27.

    CAS  Article  Google Scholar 

  45. 45.

    Bacakova L, et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.

    CAS  Article  Google Scholar 

  46. 46.

    Tian ZQ, Ren B, Wu DY. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B. 2002;106:9463–83.

    CAS  Article  Google Scholar 

  47. 47.

    Swatloski RP, et al. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    CAS  Article  Google Scholar 

  48. 48.

    Tang SK, Baker GA, Zhao H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev. 2012;41:4030–66.

    CAS  Article  Google Scholar 

  49. 49.

    Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    CAS  Article  Google Scholar 

  50. 50.

    Yang D, et al. Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind Crops Products. 2013;43:141–9.

    CAS  Article  Google Scholar 

  51. 51.

    Shen YH, et al. Interfacial pH: a critical factor for osteoporotic bone regeneration. Langmuir. 2011;27:2701–8.

    CAS  Article  Google Scholar 

  52. 52.

    Liu YP, et al. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale. 2015;7:3130–6.

    CAS  Article  Google Scholar 

  53. 53.

    Li K, et al. The enhanced angiogenic responses to ionic dissolution products from a boron-incorporated calcium silicate coating. Mater Sci Eng C Mater Biol Appl. 2019;101:513–20.

    CAS  Article  Google Scholar 

Download references

Funding

The authors funding support from the National Nature Science Foundation of China (31500762), Guangdong Science and Technology Program (2014B010133001, 2016A010103009), National key research and development plan project (2016YFC1100600).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lei Zeng or Fei Hang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Zhang, Y., Dai, K. et al. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. J Mater Sci: Mater Med 31, 77 (2020). https://doi.org/10.1007/s10856-020-06413-6

Download citation