Skip to main content
Log in

Transdermal delivery of curcumin-loaded supramolecular hydrogels for dermatitis treatment

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Curcumin (CUR) is a hydrophobic polyphenol with anti-inflammatory activity. However, its low water-solubility and poor skin permeation limited its application in the treatment of dermititis. CUR-loaded micelles were prepared using thin membrane hydration method with methoxy poly (ethylene glycol)-block-poly (ε-caprolactone) (MPEG-PCL) as carrier material. The drug loading capacity and encapsulation efficiency were 12.14 ± 0.33 and 93.57 ± 1.67%, respectively. CUR-loaded micelles increased CUR’s water-solubility to 1.87 mg/mL, being 1.87 × 106-folds higher than native CUR. CUR-loaded supramolecular hydrogels (CUR-H) were prepared through mixing the CUR-loaded micelles solution with α-cyclodextrin (α-CD) solution. The CUR-H presented continuous dissolution behaviour in aqueous medium for 4.5 h. The ex vivo skin permeation test and confocal fluorescence microscopy evaluation confirmed that CUR-H obviously enhanced skin deposition of CUR without drug flux from skin. In vivo experimental results confirmed that the CUR-H was more effective than dexamethasone ointments against croton oil-induced ear edema. The CUR-H composed of MPEG-PCL and α-CD is a promising formulation for skin inflammatory treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, et al. Drug-bearing supramolecular filament hydrogels as anti-inflammatory agents. Theranostics. 2017;7:2003–14. https://doi.org/10.7150/thno.19404

    Article  CAS  Google Scholar 

  2. BB A, W Y, S L, SC G. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol Nutr Food Res. 2013;57:1529–42. https://doi.org/10.1002/mnfr.201200838

    Article  CAS  Google Scholar 

  3. Kim KM, Pae HO, Zhung M, Ha HY, Ha YA, Chai KY, et al. Involvement of anti-inflammatory heme oxygenase-1 in the inhibitory effect of curcumin on the expression of pro-inflammatory inducible nitric oxide synthase in RAW264.7 macrophages. Biomed Pharmacother. 2008;62:630–6. https://doi.org/10.1016/j.biopha.2008.01.008

    Article  CAS  Google Scholar 

  4. Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2018. https://doi.org/10.1002/jcp.27096.

  5. Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci. 2008;97:1179–90. https://doi.org/10.1002/jps.21037

    Article  CAS  Google Scholar 

  6. Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359:318–25. https://doi.org/10.1016/j.jcis.2011.03.071

    Article  CAS  Google Scholar 

  7. Harrison IP, Spada F. Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle. Pharmaceutics . 2018;10:71 https://doi.org/10.3390/pharmaceutics10020071

    Article  Google Scholar 

  8. Li XY, Chen S, Zhang BJ, Li M, Diao K, Zhang ZL, et al. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm. 2012;437:110–9. https://doi.org/10.1016/j.ijpharm.2012.08.001

    Article  CAS  Google Scholar 

  9. Chen X, Zhi F, Jia XF, Zhang X, Ambardekar R, Meng ZJ, et al. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J Pharm Pharmacol. 2013;65:807–16. https://doi.org/10.1111/jphp.12043

    Article  CAS  Google Scholar 

  10. Gong CY, Wu QJ, Wang YJ, Zhang DD, Luo F, Zhao X, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34:6377–87. https://doi.org/10.1016/j.biomaterials.2013.05.005

    Article  CAS  Google Scholar 

  11. Koop HS, de Freitas RA, de Souza MM, Savi-Jr R, Silveira JL. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan. Carbohydr Polym. 2015;116:229–36. https://doi.org/10.1016/j.carbpol.2014.07.043

    Article  CAS  Google Scholar 

  12. Sun YB, Du LN, Liu YP, Li X, Li M, Jin YG, et al. Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-beta-cyclodextrin for melanoma treatment. Int J Pharm. 2014;469:31–9. https://doi.org/10.1016/j.ijpharm.2014.04.039

    Article  CAS  Google Scholar 

  13. Nguyen HT, Munnier E, Souce M, Perse X, David S, Bonnier F, et al. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application. Nanotechnology. 2015;26:255101 https://doi.org/10.1088/0957-4484/26/25/255101

    Article  CAS  Google Scholar 

  14. Bachhav YG, Mondon K, Kalia YN, Gurny R, Moller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release. 2011;153:126–32. https://doi.org/10.1016/j.jconrel.2011.03.003

    Article  CAS  Google Scholar 

  15. Poree DE, Giles MD, Lawson LB, He J, Grayson SM. Synthesis of amphiphilic star block copolymers and their evaluation as transdermal carriers. Biomacromolecules. 2011;12:898–906. https://doi.org/10.1021/bm101185t

    Article  CAS  Google Scholar 

  16. Lapteva M, Mondon K, Moller M, Gurny R, Kalia YN. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: a targeted approach for the treatment of psoriasis. Mol Pharm. 2014;11:2989–3001. https://doi.org/10.1021/mp400639e

    Article  CAS  Google Scholar 

  17. Lapteva M, Santer V, Mondon K, Patmanidis I, Chiriano G, Scapozza L, et al. Targeted cutaneous delivery of ciclosporin A using micellar nanocarriers and the possible role of inter-cluster regions as molecular transport pathways. J Control Release. 2014;196:9–18. https://doi.org/10.1016/j.jconrel.2014.09.021

    Article  CAS  Google Scholar 

  18. Deng P, Teng F, Zhou F, Song Z, Meng N, Feng R. Methoxy poly (ethylene glycol)-b-poly (delta-valerolactone) copolymeric micelles for improved skin delivery of ketoconazole. J Biomater Sci Polym Ed. 2017;28:63–78. https://doi.org/10.1080/09205063.2016.1244371

    Article  CAS  Google Scholar 

  19. Deng PZ, Teng FF, Zhou FL, Song ZM, Meng N, Liu N, et al. Y-shaped methoxy poly (ethylene glycol)-block-poly (epsilon-caprolactone)-based micelles for skin delivery of ketoconazole: in vitro study and in vivo evaluation. Mater Sci Eng C Mater Biol Appl. 2017;78:296–304. https://doi.org/10.1016/j.msec.2017.04.089

    Article  CAS  Google Scholar 

  20. Zhao SP, Zhang LM, Ma D. Supramolecular hydrogels induced rapidly by inclusion complexation of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) block copolymers with alpha-cyclodextrin in aqueous solutions. J Phys Chem B. 2006;110:12225–9. https://doi.org/10.1021/jp057506u

    Article  CAS  Google Scholar 

  21. Varan C, Bilensoy E. Development of implantable hydroxypropyl-beta-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors. J Incl Phenom Macrocycl Chem. 2014;80:9–15. https://doi.org/10.1007/s10847-014-0422-6

    Article  CAS  Google Scholar 

  22. Qiu L, Zhang L, Zheng C, Wang R. Improving physicochemical properties and doxorubicin cytotoxicity of novel polymeric micelles by poly(epsilon-caprolactone) segments. J Pharm Sci. 2011;100:2430–42. https://doi.org/10.1002/jps.22468

    Article  CAS  Google Scholar 

  23. Khodaverdi E, Heidari Z, Tabassi SA, Tafaghodi M, Alibolandi M, Tekie FS, et al. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and gamma-cyclodextrin with sustained-release property. AAPS PharmSciTech. 2015;16:140–9. https://doi.org/10.1208/s12249-014-0198-4

    Article  CAS  Google Scholar 

  24. Payyappilly S, Dhara S, Chattopadhyay S. Thermoresponsive biodegradable PEG0-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res Part A. 2014;102:1500–9. https://doi.org/10.1002/jbm.a.34800

    Article  CAS  Google Scholar 

  25. Gong CY, Wu QJ, Dong PW, Shi SA, Fu SZ, Guo G, et al. Acute toxicity evaluation of biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PEG-PCL-PEG hydrogel. J Biomed Mater Res B. 2009;91b:26–36. https://doi.org/10.1002/jbm.b.31370

    Article  CAS  Google Scholar 

  26. Gong CY, Shi SA, Dong PW, Yang B, Qi XR, Guo G, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1-synthesis, characterization, and acute toxicity evaluation. J Pharm Sci. 2009;98:4684–94. https://doi.org/10.1002/jps.21780

    Article  CAS  Google Scholar 

  27. Fang F, Gong CY, Dong PW, Fu SZ, Gu YC, Guo G, et al. Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Biomed Mater. 2009;4:025002 https://doi.org/10.1088/1748-6041/4/2/025002

    Article  CAS  Google Scholar 

  28. Baek JS, Lim JH, Kang JS, Shin SC, Jung SH, Cho CW. Enhanced transdermal drug delivery of zaltoprofen using a novel formulation. Int J Pharm. 2013;453:358–62. https://doi.org/10.1016/j.ijpharm.2013.05.059

    Article  CAS  Google Scholar 

  29. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin-beta-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech. 2013;14:1303–12. https://doi.org/10.1208/s12249-013-0023-5

    Article  CAS  Google Scholar 

  30. Lee H, Zeng F, Dunne M, Allen C. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005;6:3119–28. https://doi.org/10.1021/bm050124+

    Article  CAS  Google Scholar 

  31. Mathes C, Melero A, Conrad P, Vogt T, Rigo L, Selzer D, et al. Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. J Control Release. 2016;223:207–14. https://doi.org/10.1016/j.jconrel.2015.12.010

    Article  CAS  Google Scholar 

  32. Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials. 2013;34:1413–32. https://doi.org/10.1016/j.biomaterials.2012.10.068

    Article  CAS  Google Scholar 

  33. Rehman K, Zulfakar MHJDD. Pharmacy I. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm. 2014;40:433–40. https://doi.org/10.3109/03639045.2013.828219

    Article  CAS  Google Scholar 

  34. Che JX, Wu ZS, Shao WY, Guo PH, Lin YY, Pan WH, et al. Synergetic skin targeting effect of hydroxypropyl-beta-cyclodextrin combined with microemulsion for ketoconazole. Eur J Pharm Biopharm. 2015;93:136–48. https://doi.org/10.1016/j.ejpb.2015.03.028

    Article  CAS  Google Scholar 

  35. Conte C, Costabile G, d’Angelo I, Pannico M, Musto P, Grassia G, et al. Skin transport of PEGylated poly(epsilon-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-beta-cyclodextrin. J Colloid Interface Sci. 2015;454:112–20. https://doi.org/10.1016/j.jcis.2015.05.010

    Article  CAS  Google Scholar 

  36. Gou ML, Men K, Shi HS, Xiang ML, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale . 2011;3:1558–67. https://doi.org/10.1039/c0nr00758g

    Article  CAS  Google Scholar 

  37. Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 2010;79:113–25. https://doi.org/10.1016/j.colsurfb.2010.03.039

    Article  CAS  Google Scholar 

  38. Ma MF, Sun T, Xing PY, Li ZL, Li SY, Su J, et al. A supramolecular curcumin vesicle and its application in controlling curcumin release. Colloid Surf A. 2014;459:157–65. https://doi.org/10.1016/j.colsurfa.2014.06.043

    Article  CAS  Google Scholar 

  39. Grant N, Zhang HF. Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach. J Colloid Interface Sci. 2011;356:573–8. https://doi.org/10.1016/j.jcis.2011.01.056

    Article  CAS  Google Scholar 

  40. Ma D, Zhang LM, Xie X, Liu T, Xie MQ. Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci. 2011;359:399–406. https://doi.org/10.1016/j.jcis.2011.04.032

    Article  CAS  Google Scholar 

  41. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R. Curcumin-Loaded N,O-Carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed. 2011;23:1381–400. https://doi.org/10.1163/092050611X581534

    Article  CAS  Google Scholar 

  42. Zhu W, Li Y, Liu LX, Chen YM, Xi F. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int J Pharm. 2012;437:11–9. https://doi.org/10.1016/j.ijpharm.2012.08.007

    Article  CAS  Google Scholar 

  43. Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS. Delivery of the photosensitizer Pc 4 in PEG-PCL micelles for in vitro PDT studies. J Pharm Sci. 2010;99:2386–98. https://doi.org/10.1002/jps.22007

    Article  CAS  Google Scholar 

  44. Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials . 2006;27:4132–40. https://doi.org/10.1016/j.biomaterials.2006.03.025

    Article  CAS  Google Scholar 

  45. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature . 1997;388:860–2. https://doi.org/10.1038/42218

    Article  CAS  Google Scholar 

  46. Guo MY, Jiang M, Pispas S, Yu W, Zhou CX. Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and alpha-cyclodextrin and their hybridization with SiO2 nanoparticles through host-guest interaction. Macromolecules. 2008;41:9744–9. https://doi.org/10.1021/ma801975s

    Article  CAS  Google Scholar 

  47. Feng RL, Zhu WX, Song ZM, Zhao LY, Zhai GX. Novel star-type methoxy-poly(ethylene glycol) (PEG)-poly(epsilon-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin. J Nanopart Res. 2013;15:1748–59. https://doi.org/10.1007/S11051-013-1748-5

    Article  Google Scholar 

  48. Zhao SP, Lee JH, Xu WL. Supramolecular hydrogels formed from biodegradable ternary COS-g-PCL-b-MPEG copolymer with alpha-cyclodextrin and their drug release. Carbohydr Res. 2009;344:2201–8. https://doi.org/10.1016/j.carres.2009.08.017

    Article  CAS  Google Scholar 

  49. Khodaverdi E, Aboumaashzadeh M, Tekie FSM, Hadizadeh F, Tabassi SAS, Mohajeri SA, et al. Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran Polym J. 2014;23:707–16. https://doi.org/10.1007/s13726-014-0265-4

    Article  CAS  Google Scholar 

  50. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th edn. 2215 Constitution Avenue NW. Washington, DC: Pharmaceutical Press, American Pharmacists Association; 2009.

    Google Scholar 

  51. Miller T, van Colen G, Sander B, Golas MM, Uezguen S, Weigandt M, et al. Drug loading of polymeric micelles. Pharm Res. 2013;30:584–95. https://doi.org/10.1007/s11095-012-0903-5

    Article  CAS  Google Scholar 

  52. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15:1867–76. https://doi.org/10.1016/S0731-7085(96)02024-9

    Article  CAS  Google Scholar 

  53. Pradhan M, Singh D, Singh MR. Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release. 2013;170:380–95. https://doi.org/10.1016/j.jconrel.2013.05.020

    Article  CAS  Google Scholar 

  54. Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm. 2015;495:599–607. https://doi.org/10.1016/j.ijpharm.2015.09.015

    Article  CAS  Google Scholar 

  55. Klaewklod A, Tantishaiyakul V, Hirun N, Sangfai T, Li L. Characterization of supramolecular gels based on beta-cyclodextrin and polyethyleneglycol and their potential use for topical drug delivery. Mater Sci Eng C Mater Biol Appl. 2015;50:242–50. https://doi.org/10.1016/j.msec.2015.02.018

    Article  CAS  Google Scholar 

  56. Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70:633–40. https://doi.org/10.1016/j.ejpb.2008.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province [Grant number ZR2016BL15]; Science and Technology Project of University of Jinan [Grant number XKY1732]; and Shandong Talents Team Cultivation Plan of University Preponderant Discipline [Grant number 10027].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runliang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Song, Z., Wen, Y. et al. Transdermal delivery of curcumin-loaded supramolecular hydrogels for dermatitis treatment. J Mater Sci: Mater Med 30, 11 (2019). https://doi.org/10.1007/s10856-018-6215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6215-5

Navigation