Skip to main content
Log in

Tailoring structural properties of spray-dried methotrexate-loaded poly (lactic acid)/poloxamer microparticle blends

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Drug delivery systems can overcome cancer drug resistance, improving the efficacy of chemotherapy agents. Poly (lactic acid) (PLA) microparticles are an interesting alternative because their hydrophobic surface and small particle size could facilitate interactions with cells. In this study, two poloxamers (PLX 407 and 188) were applied to modulate the structural features, the drug release behavior and the cell viability from spray-dried microparticles. Five formulations with different PLA: PLX blend ratio (100:0, 75:25, 50:50, 25:50, and 0:100) were well-characterized by SEM, particle size analysis, FTIR spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis (XRD). The spray-dried microparticles showed higher drug loading, spherical-shape, and smaller particle size. The type of poloxamer and blend ratio affected their structural and functional properties such as morphology, crystallinity, blend miscibility, drug release rate, and cell viability. The methotrexate (MTX), a model drug, was loaded in amorphous spray-dried microparticles. Moreover, the drug release studies demonstrated that PLX induced a leaching-effect of MTX from PLA: PLX blends, suggesting the formation of MTX/PLX micelles in aqueous medium. This finding was better established by cell viability assays. Therefore, biocompatible PLA: PLX blends showed promising in vitro results, and further in vivo studies will be performed to evaluate the performance of this chemotherapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MTX:

Methotrexate

PLA:

Poly (lactic acid)

PLX 407:

Poloxamer 407

PLX 188:

Poloxamer 188

PEO:

Poly (ethylene oxide)

PPO:

Poly (propylene oxide) (PPO)

Blank PLA:

Blank PLA microparticles

Blank PLX:

Blank PLX microparticles

MTX-PLA:

Methotrexate-loaded PLA microparticles

MTX-PLX:

Methotrexate-loaded PLX microparticles

PLA: PLX:

Blends between PLA and PLX

PLA: PLX 25:75:

Blends between PLA and PLX in the ratio 25:75

PLA: PLX 50:50:

Blends between PLA and PLX in the ratio 50:50

PLA: PLX 75:25:

Blends between PLA and PLX in the ratio 75:25

MTX-PLA: PLX:

Methotrexate-loaded PLA: PLX blends

SEM:

Scanning Electron Microscopy

SPAN:

Polydispersity index

DL:

Drug loading

EE:

Encapsulation Efficiency

DLS:

Dynamic Light Scattering

XRD:

X-ray Diffraction Analysis

DSC:

Differential Scanning Calorimetry

MTT:

3-[4,5-dimethylthiazol-2-yl]−2,5-diphenyltetrazolium bromide

FTIR:

Fourier Transform Infrared Spectroscopy

References

  1. Carretero G, Puig L, Dehesa L, Carrascosa JM, Ribera M, Sánchez-Regaña M, et al. Guidelines on the use of methotrexate in psoriasis. Actas Dermosifiliogr. 2010;101:600–13. https://doi.org/10.1016/S1578-2190(10)70682-X.

  2. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1 - Cytotoxics. Eur J Cancer. 2014;50:2010–9. https://doi.org/10.1016/j.ejca.2014.04.014.

  3. Shibayama Y, Takeda Y, Yamada K. Effect of methotrexate treatment on expression levels of organic anion transporter polypeptide 2, P-glycoprotein and bile salt export pump in rats. Biol Pharm Bull. 2009;32:493–6. https://doi.org/10.1248/bpb.32.493.

    Article  CAS  Google Scholar 

  4. Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomed. 2011;6:1595–602. https://doi.org/10.2147/IJN.S23025.

  5. Lei H, Gao X, Wu WD, Wu Z, Chen XD. Aerosol-assisted fast formulating uniform pharmaceutical polymer microparticles with variable properties toward pH-sensitive controlled drug release. Polym (Basel). 2016;8:1–15. https://doi.org/10.3390/polym8050195.

  6. do Nascimento EG, de Caland LB, de Medeiros ASA, Fernandes-Pedrosa MF, Soares-Sobrinho, Santos KSCR, et al. Tailoring drug release properties by gradual changes in the particle engineering of polysaccharide chitosan based powders. Polym (Basel). 2017;9:1–14. https://doi.org/10.3390/polym9070253.

  7. Paganelli F, Cardillo JA, Melo Jr LAS, Lucena DR, Silva Jr AA, Oliveira AG, et al. A single intraoperative sub-Tenon’s capsule injection of triamcinolone and ciprofloxacin in a controlled-release system for cataract surgery. Investig Ophthalmol Vis Sci. 2009;50:3041–7. https://doi.org/10.1167/iovs.08-2920.

  8. Yang MY, Chan JGY, Chan HK. Pulmonary drug delivery by powder aerosols. J Control Release. 2014;193:228–40. https://doi.org/10.1016/j.jconrel.2014.04.055.

    Article  CAS  Google Scholar 

  9. Mesquita PC, Oliveira AR, Fernandes-Pedrosa MF, Oliveira AG, Silva-Júnior AA. Physicochemical aspects involved in methotrexate release kinetics from biodegradable spray-dried chitosan microparticles. J Phys Chem Solids. 2015;81:27–33. https://doi.org/10.1016/j.jpcs.2015.01.014.

  10. Oliveira AR, Molina EF, Mesquita PC, Fonseca JLC, Rossanezi G, Fernandes-Pedrosa MF, et al. Structural and thermal properties of spray-dried methotrexate-loaded biodegradable microparticles. J Therm Anal Calorim. 2013;112:555–65. https://doi.org/10.1007/s10973-012-2580-3.

  11. Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP. Materials for pharmaceutical dosage forms: Molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010;11:3298–322. https://doi.org/10.3390/ijms11093298.

    Article  CAS  Google Scholar 

  12. Kohane DS, Langer R. Polymeric biomaterials in tissue engineering. Pediatr Res. 2008;63:487–91.

    Article  CAS  Google Scholar 

  13. Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21:2615–21. https://doi.org/10.1016/S0142-9612(00)00129-0.

    Article  Google Scholar 

  14. Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008;79:1585–91. https://doi.org/10.1902/jop.2008.080183.

    Article  CAS  Google Scholar 

  15. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym. 2008;6:2166–71. https://doi.org/10.1021/nl061786n.Core-Shell.

    Article  Google Scholar 

  16. Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev. 2007;59:249–62. https://doi.org/10.1016/j.addr.2007.03.015.

    Article  CAS  Google Scholar 

  17. Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces. 2007;60:137–57. https://doi.org/10.1016/j.colsurfb.2007.06.019.

    Article  CAS  Google Scholar 

  18. Santos-Silva AM, De Caland LB, Oliveira ALCSL, Araújo-Júnior RF, Fernandes-Pedrosa MF, Cornélio AM, et al. Designing structural features of novel benznidazole-loaded cationic nanoparticles for inducing slow drug release and improvement of biological efficacy. Mater Sci Eng C. 2017;78:978–87. https://doi.org/10.1016/j.msec.2017.04.053.

  19. Leo E, Ruozi B, Tosi G, Vandelli MA. PLA-microparticles formulated by means a thermoreversible gel able to modify protein encapsulation and release without being co-encapsulated. Int J Pharm. 2006;323:131–8. https://doi.org/10.1016/j.ijpharm.2006.05.047.

    Article  CAS  Google Scholar 

  20. Gou M, Li X, Dai M, Gong CY, Wang XH, Xie Y, et al. A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008;359:228–33. https://doi.org/10.1016/j.ijpharm.2008.03.023.

  21. Barwal I, Sood A, Sharma M, Singh B, Yadav SC. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces. 2013;101:510–6. https://doi.org/10.1016/j.colsurfb.2012.07.005.

  22. Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: Optimization and in vitro, in vivo evaluation. Int J Nanomed. 2013;8:73–84. https://doi.org/10.2147/IJN.S38221.

  23. Jackson JK, Hung T, Letchford K, Burt HM. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Int J Pharm. 2007;342:6–17. https://doi.org/10.1016/j.ijpharm.2007.04.022.

    Article  CAS  Google Scholar 

  24. Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive self-assembling block copolymers as drug delivery systems. Polym (Basel). 2011;3:779–811. https://doi.org/10.3390/polym3020779.

  25. Batrakova EV, Kabanov AV. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130:98–106. https://doi.org/10.1016/j.jconrel.2008.04.013.

    Article  CAS  Google Scholar 

  26. Cambón A, Rey-Rico A, Barbosa S, Soltero JFA, Yeates SG, Brea J, et al. Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From “classical” chemotherapeutic nanocarriers to active cell-response inducers. J Control Release. 2013;167:68–75. https://doi.org/10.1016/j.jconrel.2013.01.010.

  27. Gong J, Jaiswal R, Mathys J-M, Combes V, Grau GER, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev. 2012;38:226–34. https://doi.org/10.1016/j.ctrv.2011.06.005.

  28. Oliveira EG, De Caland LB, Oliveira AR, Machado PRL, Farias KJS, Da Costa TR, et al. Monitoring thermal, structural properties, methotrexate release and biological activity from biocompatible spray dried microparticles. J Therm Anal Calorim. 2017;130:1481–90. https://doi.org/10.1007/s10973-017-6547-2.

  29. Oliveira AR, Caland LB, Oliveira EG, Egito EST, Pedrosa, MFF, Silva-Júnior AA. HPLC-DAD and UV-vis spectrophotometric methods for methotrexate assay in different biodegradable Microparticles. J Braz Chem Soc. 2015;26:649–59. https://doi.org/10.5935/0103-5053.20150022.

  30. Segal L, Creely JJ Jr, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J. 1959;29:786–94.

    Article  CAS  Google Scholar 

  31. Chadha R, Arora P, Kaur R, Saini A, Singla ML, Jain DS. Characterization of solvatomorphs of methotrexate using thermoanalytical and other techniques. Acta Pharm. 2009;59:245–57. https://doi.org/10.2478/v10007-009-0024-9.

  32. Fu Y, Shyu S, Su F, Yu P. Development of biodegradable co-poly (D,L-lactic/glycolic acid) microspheres for the controlled release of 5-FU by the spray drying method. Colloids Surf B Biointerfaces. 2002;25:269–79.

    Article  CAS  Google Scholar 

  33. Gavini E, Manunta L, Giua S, Achenza G, Giunchedi P. Spray-dried poly(D,L-lactide) microspheres containing carboplatin for veterinary use: in vitro and in vivo studies. AAPS PharmSciTech. 2005;6:E108–14. https://doi.org/10.1208/pt060117.

  34. Silva-Júnior AA, Scarpa MV, Pestana KC, Mercuri LP, Matos JR, Oliveira AG. Thermal analysis of biodegradable microparticles containing ciprofloxacin hydrochloride obtained by spray drying technique. Thermochim Acta. 2008;467:91–98. https://doi.org/10.1016/j.tca.2007.10.018.

  35. Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci. 2003;265:296–303. https://doi.org/10.1016/S0021-9797(03)00519-8.

    Article  CAS  Google Scholar 

  36. Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv Powder Technol. 2011;22:1–19. https://doi.org/10.1016/j.apt.2010.09.011.

    Article  CAS  Google Scholar 

  37. Saini P, Arora M, Kumar MNVR. Poly (lactic acid) blends in biomedical applications. Adv Drug Deliv Rev. 2016;107:47–59. https://doi.org/10.1016/j.addr.2016.06.014.

    Article  CAS  Google Scholar 

  38. Blasi P, D’Souza SS, Selmin F, DeLuca PP. Plasticizing effect of water on poly(lactide-co-glycolide). J Control Release. 2005;108:1–9. https://doi.org/10.1016/j.jconrel.2005.07.009.

    Article  CAS  Google Scholar 

  39. Park TG, Cohen S, Langer R. Poly(L-lactic acid)/Pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules. 1992;25:116–22. https://doi.org/10.1021/ma00027a019.

    Article  CAS  Google Scholar 

  40. Can E, Udenir G, Kanneci AI, Kose G, Bucak S. Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS PharmSciTech. 2011;12:1442–53. https://doi.org/10.1208/s12249-011-9714-y.

  41. Kiss E, Bertóti I, Vargha-Butler EI. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. J Colloid Interface Sci. 2002;245:91–8. https://doi.org/10.1006/jcis.2001.7954.

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang W, Gu J, Ren Q, Fan Z, Zhong W. Enhanced antitumor efficacy by methotrexate conjugated Pluronic mixed micelles against KBv multidrug resistant cancer. Int J Pharm. 2013;452:421–33. https://doi.org/10.1016/j.ijpharm.2013.05.015.

  43. Lim JS, Park KIl, Chung GS, Kim JH. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites. Mater Sci Eng C. 2013;33:2131–7. https://doi.org/10.1016/j.msec.2013.01.030.

    Article  CAS  Google Scholar 

  44. Pillin I, Montrelay N, Grohens Y. Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? Polym (Guildf). 2006;47:4676–82. https://doi.org/10.1016/j.polymer.2006.04.013.

    Article  CAS  Google Scholar 

  45. Loh CH, Wang R, Shi L, Fane AG. Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives. J Memb Sci. 2011;380:114–23. https://doi.org/10.1016/j.memsci.2011.06.041.

    Article  CAS  Google Scholar 

  46. Xiong XY, Li YP, Li ZL, Zhou CH, Tam KC, Liu ZH, et al. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J Control Release. 2007;120:11–17. https://doi.org/10.1016/j.jconrel.2007.04.004.

  47. Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine Nanotechnology, Biol Med. 2010;6:170–8. https://doi.org/10.1016/j.nano.2009.05.004.

  48. de Oliveira AR, Mesquita PC, Machado PRL, Farias KJS, Almeida YMB, Fernandes-Pedrosa MF, et al. Monitoring structural features, biocompatibility and biological efficacy of gamma-irradiated methotrexate-loaded spray-dried microparticles. Mater Sci Eng C. 2017;80:438–48. https://doi.org/10.1016/j.msec.2017.06.013.

  49. Zhang Y, Lam YM. Study of mixed micelles and interaction parameters for polymeric nonionic and normal surfactants. J Nanosci Nanotechnol. 2006;6:1–5. https://doi.org/10.1166/jnn.2006.673.

    Article  CAS  Google Scholar 

  50. Hu M, Chen M, Li G, Pang Y, Wang D, Wu J, et al. Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromolecules. 2012;13:3552–61. https://doi.org/10.1021/bm300966d.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from CNPQ (grant number: 479195/2008; 483073/2010-5, 481767/2012-6) and CAPES (Scholarship of E.G. Oliveira). The authors also thank the help of Andy Cumming in checking the English text.

Author contributions

E.G. Oliveira performed all experiments and drafted the manuscript. P.R.L. Machado and K.J.S. Farias were responsible for the cell assays. D.M.A. Melo, T.R. da Costa performed DSC analyses. M.F. Fernandes-Pedrosa and A.F. Lacerda suggested improvements in the experimental methodology and revised this part of the paper. A.M. Cornélio helped with discussion about biological activity. A.A. da Silva-Junior suggested the research line as well as wrote and revised the final version of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnóbio Antônio da Silva-Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, E.G., Machado, P.R.L., Farias, K.J.S. et al. Tailoring structural properties of spray-dried methotrexate-loaded poly (lactic acid)/poloxamer microparticle blends. J Mater Sci: Mater Med 30, 12 (2019). https://doi.org/10.1007/s10856-018-6214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6214-6

Navigation