Skip to main content

Advertisement

Log in

Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ajiboye R, Eckardt M, Hamamoto J, Plotkin B, Daubs M, Wang J. Outcomes of demineralized bone matrix enriched with concentrated bone marrow aspirate in lumbar fusion. Int J Spine Surg. 2016;10:35.

    Article  Google Scholar 

  2. Dinopoulos H, Giannoudis P. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. Expert Opin Drug Saf. 2006;5:847–66.

    Article  CAS  Google Scholar 

  3. Shigeyama Y, D’Errico Ja, Stone R, Somerman MJ, Shigeyama Y, D’Errico J, Stone R, et al. Commercially prepared allograft material has biological activity in vitro. J Periodontol. 1995;66:478–87.

    Article  CAS  Google Scholar 

  4. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    Article  CAS  Google Scholar 

  5. Blum B, Moseley J, Miller L, Richelsoph K, Haggard W. Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics. 2004;27:s161–5.

    Google Scholar 

  6. Wildemann B, Kadow-Romacker a, Pruss a, Haas NP, Schmidmaier G. Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank. 2007;8:107–14.

    Article  CAS  Google Scholar 

  7. Hinsenkamp M, Collard J-F. Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. Int Orthop. 2015;39:137–47.

    Article  Google Scholar 

  8. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB. Variability across ten production lots of a single demineralized bone matrix product. J Bone Jt Surg Am. 2010;92:427–35.

    Article  Google Scholar 

  9. Drosos GI, Touzopoulos P, Ververidis A, Tilkeridis K, Kazakos K. Use of demineralized bone matrix in the extremities. World J Orthop. 2015;6:269–77.

    Article  Google Scholar 

  10. Behnam K, Brochmann EJ, Murray SS. Alkali-urea extraction of demineralized bone matrix removes noggin, an inhibitor of bone morphogenetic proteins. Connect Tissue Res. 2004;45:257–60.

    Article  CAS  Google Scholar 

  11. Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, et al. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 2013;9:7865–73.

    Article  CAS  Google Scholar 

  12. Sampath TK, Reddi aH. Distribution of bone inductive proteins in mineralized and demineralized extracellular matrix. Biochem Biophys Res Commun. 1984;119:949–54.

    Article  CAS  Google Scholar 

  13. Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D. Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater. 2004;70:21–9.

    Article  Google Scholar 

  14. Schwartz Z, Somers a, Mellonig JT, Carnes DL, Dean DD, Cochran DL, et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol. 1998;69:470–8.

    Article  CAS  Google Scholar 

  15. Lohmann CH, Andreacchio D, Köster G, Carnes DL, Cochran DL, Dean DD, et al. Tissue response and osteoinduction of human bone grafts in vivo. Arch Orthop Trauma Surg. 2001;121:583–90.

    Article  CAS  Google Scholar 

  16. Bormann N, Pruss A, Schmidmaier G, Wildemann B. In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg. 2010;130:143–9.

    Article  CAS  Google Scholar 

  17. Jang YS, Choi CH, Cho YB. Recombinant human BMP-2 enhances osteogenesis of demineralized bone matrix in experimental mastoid obliteration. Acta Otolaryngol. 2014;134:785–90.

    Article  CAS  Google Scholar 

  18. Huber E, Pobloth A-M, Bormann N, Kolarczik N, Schmidt-Bleek K, Schell H, et al. Demineralized bone matrix as a carrier for bone morphogenetic protein-2: burst release combined with long-term binding and osteoinductive activity evaluated in vitro and in vivo. Tissue Eng Part A. 2017;23:1321–30.

    Article  CAS  Google Scholar 

  19. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J Elsevier Inc. 2014;14:552–9.

    Google Scholar 

  20. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J Elsevier Inc. 2011;11:471–91.

    Google Scholar 

  21. Valera E, Isaacs MJ, Kawakami Y, Belmonte JCI, Choe S. BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS ONE. 2010;5(6): e11167.

  22. Aono A, Hazama M, Notoya K, Taketomi S, Yamasaki H, Tsukuda R, et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun. 1995;210(3):670–7.

  23. Bessho K, Kusumoto K, Fujimura K, Konishi Y, Ogawa Y, Tani Y, et al. Comparison of recombinant and purified human bone morphogenetic protein. Br J Oral Maxillofac Surg. 1999;37(1):2–5.

  24. Jeong I, Yu H-S, Kim M-K, Jang J-H, Kim H-W. FGF2-adsorbed macroporous hydroxyapatite bone granules stimulate in vitro osteoblastic gene expression and differentiation. J Mater Sci Mater Med. 2010;21:1335–42.

    Article  CAS  Google Scholar 

  25. Hossain M, Irwin R, Baumann MJ, McCabe LR. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials. 2005;26:2595–602.

    Article  CAS  Google Scholar 

  26. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  CAS  Google Scholar 

  27. Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997;18:26–45.

    CAS  Google Scholar 

  28. Aryal R, Chen X, Fang C, Hu Y. Bone morphogenetic protein-2 and vascular endothelial growth factor in bone tissue regeneration: new insight and perspectives. Orthop Surg. 2014;6:171–8.

    Article  Google Scholar 

  29. Pietrzak WS, Dow M, Gomez J, Soulvie M, Tsiagalis G. The in vitro elution of BMP-7 from demineralized bone matrix. Cell Tissue Bank. 2012;13:653–61.

    Article  CAS  Google Scholar 

  30. Han B, Tang B, Nimni ME. Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J Orthop Res. 2003;21:648–54.

    Article  CAS  Google Scholar 

  31. Wildemann B, Kadow-Romacker A, Haas NPP, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007;81:437–42.

    Article  CAS  Google Scholar 

  32. Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J. 1995;15:118–40.

    CAS  Google Scholar 

  33. Baylink DJ, Finkelman RD, Mohan S. Growth factors to stimulate bone formation. J Bone Miner Res. 1993;8:S565–72.

    Article  Google Scholar 

  34. Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.

    Article  CAS  Google Scholar 

  35. Wei L, Miron RJ, Shi B, Zhang Y. Osteoinductive and osteopromotive variability among different demineralized bone allografts. Clin Implant Dent Relat Res. 2015;17:533–42.

    Article  Google Scholar 

  36. Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, et al. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci. 1995;760:223–41.

    Article  CAS  Google Scholar 

  37. Hunter GK. Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int. 2013;93:348–54.

    Article  CAS  Google Scholar 

  38. Izal I, Ripalda P, AA A, Álvarez E, Forriol F. Análisis de la presencia de TGF-ß1, BMP- 7, MMP- 2 y PEDF en distintas matrices óseas desmineralizadas. Patol Del Apar Locomot. 2006;4:125–30.

    Google Scholar 

  39. Zhang M, Powers RM, Wolfinbarger L. A quantitative assessment of osteoinductivity of human demineralized bone matrix. J Periodontol. 1997;68:1076–84.

    Article  CAS  Google Scholar 

  40. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noël L, Strong DM. Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop. 2012;36:633–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the by the Instituto de Salud Carlos III, Ministerio de Economía y Competividad and ESF European Social Fund (Fondos FSE) (PI13/00372 and MS16/00124), the Programa Campus de Excelencia Internacional del Ministerio de Educación Cultura y Deporte (contract to M.M.), the Conselleria d’Educació, Cultura i Universitats del Govern de les Illes Balears (PD/018/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Monjo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramis, J.M., Calvo, J., Matas, A. et al. Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract. J Mater Sci: Mater Med 29, 103 (2018). https://doi.org/10.1007/s10856-018-6115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6115-8

Navigation