Skip to main content
Log in

HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) can be extensively utilized in biomedical areas owing to its appreciable bioactivity. In this study, biocompatible composites of SF and hydroxyapatite (HAp) were fabricated through in situ biomimetic mineralization process. Graft copolymerization of acrylic acid (AA) onto SF was conducted by using the catalytic system of acetylacetone (ACAC), hydrogen peroxide (H2O2) and horseradish peroxidase (HRP), for enhancing the deposition of apatite onto the fibroin chains. Subsequently, biomimetic mineralization of the prepared fibroin-based membrane was performed in Ca/P solutions to synthesize the organized SF/HAp composites. The efficacies of graft copolymerization and biomimetic mineralization were evaluated by means of ATR-FTIR, GPC, EDS-Mapping, XRD and others. The results denoted that AA was successfully graft-copolymerized with fibroin and formed the copolymer of silk fibroin-graft-polyacrylic acid (SF-g-PAA), and the grafting percentage (GP) and grafting efficiency (GE) under the optimal condition reached to 23.2% and 29.4%, respectively. More mineral phases were detected on the surface of SF-g-PAA membrane after mineralization process when compared to that of the untreated fibroin membrane, companying with an improved mechanical property. According to MG-63 cell viability and fluorescent adhesion assays, the mineralized SF-g-PAA composite showed satisfactory biocompatibility and exceptional adhesive effects as well. The synthetized composite of SF-g-PAA/HAp can be potentially applied in the fields of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang P, Zhou Y, Cui L, Yuan J, Wang Q, Fan X, et al. Enzymatic grafting of lactoferrin onto silk fibroins for antibacterial functionalization. Fibers Polym. 2014;15:2045–50. https://doi.org/10.1007/s12221-014-2045-3

    Article  CAS  Google Scholar 

  2. Wang P, Yu M, Cui L, Yuan J, Wang Q, Fan X. Modification of Bombyx mori silk fabrics by tyrosinase-catalyzed grafting of chitosan. Eng Life Sci. 2014;14:211–17. https://doi.org/10.1002/elsc.201300008

    Article  CAS  Google Scholar 

  3. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  4. Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, et al. Silk fibroin membrane used for guided bone tissue regeneration. Mater Sci Eng, C. 2017;70:148–54. https://doi.org/10.1016/j.msec.2016.08.070

    Article  CAS  Google Scholar 

  5. Hurty CA, Brazik DC, Law JM, Sakamoto K, Lewbart GA. Evaluation of the tissue reactions in the skin and body wall of koi (Cyprinus carpio) to five suture materials. Vet Rec. 2002;151:324–28. https://doi.org/10.1136/vr.151.11.324

    Article  CAS  Google Scholar 

  6. Zhou J, Cao C, Ma X, Hu L, Chen L, Wang C. In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds. Polym Degrad Stab. 2010;95:1679–85. https://doi.org/10.1016/j.polymdegradstab.2010.05.025

    Article  CAS  Google Scholar 

  7. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  Google Scholar 

  8. Shao W, He J, Han Q, Sang F, Wang Q, Chen L, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng, C. 2016;67:599–610. https://doi.org/10.1016/j.msec.2016.05.081

    Article  CAS  Google Scholar 

  9. Behera S, Naskar D, Sapru S, Bhattacharjee P, Dey T, Ghosh AK, et al. Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering. Nanomed Nanotechnol Biol Med. 2017;13:1745–59. https://doi.org/10.1016/j.nano.2017.02.016

    Article  CAS  Google Scholar 

  10. Niu B, Li B, Gu Y, Shen X, Liu Y, Chen L. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. J Biomater Sci, Polym Ed. 2017;28:257–70. https://doi.org/10.1080/09205063.2016.1262163

    Article  CAS  Google Scholar 

  11. Lin F, Li Y, Jin J, Cai Y, Wei K, Yao J. Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid. Mater Chem Phys. 2008;111:92–7. https://doi.org/10.1016/j.matchemphys.2008.03.019

    Article  CAS  Google Scholar 

  12. Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, et al. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone. 2009;45:517–27. https://doi.org/10.1016/j.bone.2009.05.026

    Article  CAS  Google Scholar 

  13. Kim H, Che L, Ha Y, Ryu W. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng, C. 2014;40:324–35. https://doi.org/10.1016/j.msec.2014.04.012

    Article  CAS  Google Scholar 

  14. Ma XL, Li R, Ru L, Xu GW, Huang YP. Effect of polyaspartic acid on hydroxyapatite deposition in silk fibroin blend films. EXPRESS Polym Lett. 2010;4:321–7. https://doi.org/10.3144/expresspolymlett.2010.40

    Article  CAS  Google Scholar 

  15. Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, et al. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by glow-discharge treatment. J Biomed Mater Res Part A. 1995;29:349–57. https://doi.org/10.1002/jbm.820290310

    Article  CAS  Google Scholar 

  16. Amornsudthiwat P, Mongkolnavin R, Kanokpanont S, Panpranot J, Wong CS, Damrongsakkul S. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma. Colloids Surf, B. 2013;111:579–86. https://doi.org/10.1016/j.colsurfb.2013.07.009

    Article  CAS  Google Scholar 

  17. Freddi G, Massafra MR, Beretta S, Shibata S, Gotoh Y, Yasui H, et al. Structure and properties of Bombyx mori silk fibers grafted with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA). J Appl Polym Sci. 1996;60:1867–76. 10.1002/(SICI)1097-4628(19960613)60:11 1867::AID-APP10 3.0.CO;2-Z

    Article  CAS  Google Scholar 

  18. Tsukada M, Kasai N, Freddi G. Structural analysis of methyl methacrylate-grafted silk fibers. J Appl Polym Sci. 1993;50:885–90. https://doi.org/10.1002/app.1993.070500516

    Article  CAS  Google Scholar 

  19. González-Sánchez MI, Laurenti M, Rubio-Retama J, Valer E, Lopez-Cabarcos E. Fluorescence decrease of conjugated polymers by the catalytic activity of horseradish peroxidase and its application in phenolic compounds detection. Biomacromolecules. 2011;12:1332–8. https://doi.org/10.1021/bm200091m

    Article  CAS  Google Scholar 

  20. Singh A, Kaplan DL. Enzyme-based vinyl polymerization. J Polym Environ. 2002;10:85–91. https://doi.org/10.1023/A:1021168029840

    Article  CAS  Google Scholar 

  21. Wu H, Silva C, Yu Y, Dong A, Wang Q, Fan X, et al. Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New J Chem. 2017;41:3773–80. https://doi.org/10.1039/C7NJ00613F

    Article  CAS  Google Scholar 

  22. Wang P, Zhu X, Yuan J, Yu Y, Cui L, Duan Y, et al. Grafting of tyrosine-containing peptide onto silk fibroin membrane for improving enzymatic reactivity. Fibers Polym. 2016;17:1323–9. https://doi.org/10.1007/s12221-016-6460-5

    Article  CAS  Google Scholar 

  23. Chen X, Knight DP, Shao Z, Vollrath F. Regenerated Bombyx silk solutions studied with rheometry and FTIR. Polymer. 2001;42:9969–74. https://doi.org/10.1016/S0032-3861(01)00541-9

    Article  CAS  Google Scholar 

  24. Sun K, Li R, Jiang W, Sun Y, Li H. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Biochem Biophys Res Commun. 2016;477:1085–91. https://doi.org/10.1016/j.bbrc.2016.07.050

    Article  CAS  Google Scholar 

  25. Sheng X, Fan L, He C, Zhang K, Mo X, Wang H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol. 2013;56:49–56. https://doi.org/10.1016/j.ijbiomac.2013.01.029

    Article  CAS  Google Scholar 

  26. Wei K, Kim BS, Kim IS. Fabrication and biocompatibility of electrospun silk biocomposites. Membranes. 2011;1:275–98. https://doi.org/10.3390/membranes1040275

    Article  CAS  Google Scholar 

  27. Zeng DM, Pan JJ, Wang Q, Liu XF, Wang H, Zhang KQ. Controlling silk fibroin microspheres via molecular weight distribution. Mater Sci Eng, C. 2015;50:226–33. https://doi.org/10.1016/j.msec.2015.02.005

    Article  CAS  Google Scholar 

  28. Zhang X, Hu H. Synthesis and application of a polyacrylate dispersant on the preparation of ultrafine ground calcium carbonate in a laboratory stirred media mill. Powder Technol. 2014;266:218–27. https://doi.org/10.1016/j.powtec.2014.06.037

    Article  CAS  Google Scholar 

  29. Wang S, Wang Q, Fan X, Xu J, Zhang Y, Yuan J, et al. Synthesis and characterization of starch-poly (methyl acrylate) graft copolymers using horseradish peroxidase. Carbohydr Polym. 2016;136:1010–6. https://doi.org/10.1016/j.carbpol.2015.09.110

    Article  CAS  Google Scholar 

  30. Liu X, Niu Y, Chen KC, Chen S. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater Sci Eng, C. 2017;71:289–97. https://doi.org/10.1016/j.msec.2016.10.019

    Article  CAS  Google Scholar 

  31. Zhou B, Wang P, Cui L, Yu Y, Deng C, Wang Q, et al. Self-crosslinking of silk fibroin using H2O2-horseradish peroxidase system and the characteristics of the resulting fibroin membranes. Appl Biochem Biotechnol. 2017;182:1548–63. https://doi.org/10.1007/s12010-017-2417-4

    Article  CAS  Google Scholar 

  32. Wang L, Li C. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite. Carbohydr Polym. 2007;68:740–5. https://doi.org/10.1016/j.carbpol.2006.08.010

    Article  CAS  Google Scholar 

  33. Hexig B, Nakaoka R, Tsuchiya T. Safety evaluation of surgical materials by cytotoxicity testing. J Artif Organs. 2008;11:204–11. https://doi.org/10.1007/s10047-008-0429-0

    Article  Google Scholar 

  34. Wei W, Zhang X, Cui J, Wei Z. Interaction between low molecular weight organic acids and hydroxyapatite with different degrees of crystallinity. Colloids Surf, A. 2011;392:67–75. https://doi.org/10.1016/j.colsurfa.2011.09.034

    Article  CAS  Google Scholar 

  35. Cai X, Tong H, Shen X, Chen W, Yan J, Hu J. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 2009;5:2693–703. https://doi.org/10.1016/j.actbio.2009.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51373071, 31771039), Qing Lan Project of Jiangsu Province (SJ2016-15), the Fundamental Research Funds for the Central Universities (JUSRP51717A), and the Program for Changjiang Scholars and Innovative Research Teams in Universities (IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhou, Q., Wang, P. et al. HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization. J Mater Sci: Mater Med 29, 72 (2018). https://doi.org/10.1007/s10856-018-6084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6084-y

Navigation