Skip to main content
Log in

Phosphorylation of Silk Fibroin via Maillard Reaction and Its Behavior of Biomimetic Mineralization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) has the characteristics of non-toxicity, good biocompatibility and low immunogenicity, and exhibits many potential applications in biomaterial fields. In the present work, chemical phosphorylation of SF was carried out via the Maillard reaction using D-glucose-6-phosphate (GP), aiming at increasing the number of binding-sites for calcium ion and promoting the biomimetic mineralization of SF films. Changes in the molecular weight of SF before and after GP grafting were analyzed by SDS-PAGE and SEC chromatogram. Structures, morphologies, and elemental compositions for the fibroin-based films before and after mineralization were evaluated by the means of EDS, SEM, FTIR, and XRD. The results indicated that GP was successfully grafted onto SF surfaces, companying with a slight decrease in the molecular weight. Biomimetic mineralization led to a noticeable deposition of hydroxyapatite (HAp) on the film of SF-g-GP, and higher contents of calcium and phosphorous were detected on the mineralized material, revealing that phosphorylation promoted the mineralization processing. Meanwhile, biocompatibility of the obtained SF-g-GP/HAp was above the acceptable level according to ISO 10993-5-2009. The present work provides an alternative to prepare the fibroin-based bone repair materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, C. Wu, T. Friis, and Y. Xiao, Biomaterials, 31, 2848 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. F. He, J. Zhang, F. Yang, J. Zhu, X. Tian, and X. Chen, Mater. Sci. Eng. C-Mater. Bio. Appl., 50, 257 (2015).

    Article  CAS  Google Scholar 

  3. E. K. Cushnie, B. D. Ulery, S. J. Nelson, M. Deng, S. Sethuraman, S. B. Doty, K. W. Lo, Y. M. Khan, and C. T. Laurencin, Plos One, 9, e101627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. I. Roohani-Esfahani, Y. J. No, Z. Lu, P. Y. Ng, Y. Chen, J. Shi, N. J. Pavlos, and H. Zreiqat, Biomed. Mater., 11, 035018 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. N. A. Guziewicz, A. J. Massetti, B. J. Perez-Ramirez, and D. L. Kaplan, Biomaterials, 34, 7766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. Lerdchai, J. Kitsongsermthon, J. Ratanavaraporn, S. Kanokpanont, and S. Damrongsakkul, J. Pharm. Sci., 105, 221 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. R. Silva, B. Fabry, and A. R. Boccaccini, Biomaterials, 35, 6727 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Z. X. Cai, X. M. Mo, K. H. Zhang, L. P. Fan, A. L. Yin, C. L. He, and H. S. Wang, Int. J. Mol. Sci., 11, 3529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. F. Lin, Y. Li, J. Jin, Y. Cai, K. Wei, and J. Yao, Mater. Chem. Phys., 111, 92 (2008).

    Article  CAS  Google Scholar 

  11. K. D. Schwenke, R. Mothes, S. Dudek, and E. Görnitz, J. Agri. Food. Chem., 48, 708 (2000).

    Article  CAS  Google Scholar 

  12. T. Chen, P. Shi, Y. Li, T. Duan, Y. Yang, X. Li, and W. Zhu, CrystEngComm, 20, 2366 (2018).

    Article  CAS  Google Scholar 

  13. B. Zhou, Q. Zhou, P. Wang, J. Yuan, Y. Yu, C. Deng, Q. Wang, and X. Fan, J. Mater. Sci. Mater. Med., 29, 72 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Z. Xiong, M. Ma, G. Jin, and Q. Xu, Int. J. Biol. Macromol., 102, 1286 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. S. K. Nayak, S. Arora, J. S. Sindhu, and R. B. Sangwan, Int. Dairy, 16, 268 (2006).

    Article  CAS  Google Scholar 

  16. J. Zhao, Z. Zhang, S. Wang, X. Sun, X. Zhang, D. L. Kaplan, and X. Jiang, Bone, 45, 517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. Zhou, M. He, P. Wang, H. Fu, Y. Yu, Q. Wang, and X. Fan, Mater. Sci. Eng. C-Mater. Biol. Appl., 81, 291 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res., 34, 305 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. P. W. Schenk and B. E. Snaar-Jagalska, BBA-BioMembrane S, 1449, 1 (1999).

    CAS  Google Scholar 

  20. J. Celine, N. Celine, J. Philippe, P. Noemie, M. David, and G. Pascalem, J. Food Sci., 83, 2424 (2018).

    Article  CAS  Google Scholar 

  21. E. Rachael, G. Black, G. Koutsidis, and S. Usher, Food Chem., 232, 595 (2017).

    Article  CAS  Google Scholar 

  22. M. Lund and C. Ray, J. Agric. Food Chem., 65, 4537 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. A. K. Jaiswal, H. Chhabra, V. P. Soni, and J. R. Bellare, Mater. Sci. Eng. C-Mater. Biol. Appl., 33, 2376 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Q. Zhou, L. Cui, L. Ren, P. Wang, Q. Wang, and X. Fan, Int. J. Biol. Macromol., 113, 1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. T. Chen, P. Shi, J. Zhang, Y. Li, X. Tian, J. Lian, T. Duan, and W. Zhu, Appl. Surf. Sci., 425, 129 (2018).

    Article  CAS  Google Scholar 

  26. E. H. Ajandouz, L. S. Tchiakpe, F. D. Ore, A. Benajiba, and A. Puigserver, Food Chem. Toxicol., 66, 926 (2001).

    CAS  Google Scholar 

  27. V. A. Yaylayan, Trends. Food Sci. Tech., 8, 13 (1997).

    Article  CAS  Google Scholar 

  28. C. Luevano-Contreras and K. Chapman-Novakofski, Nutrients, 2, 1247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Hong, X. Zhu, P. Wang, H. Fu, C. Deng, L. Cui, Q. Wang, and X. Fan, Appl. Biochem. Biotechnol., 178, 1363 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. M. Yan, D. Yang, Y. Deng, P. Chen, H. Zhou, and X. Qiu, Colloid. Surface A, 371, 50 (2010).

    Article  CAS  Google Scholar 

  31. A. Motta, L. Fambri, and C. Migliaresi, Macromol. Chem. Phys., 203, 1658 (2002).

    Article  CAS  Google Scholar 

  32. N. Panda, A. Bissoyi, K. Pramanik, and A. Biswas, Mater. Sci. Eng. C-Mater. Biol. Appl., 48, 521 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. T. Chen, P. Shi, Y. Li, J. Zhang, T. Duan, Y. Yu, J. Zhou, and W. Zhu, J. Cryst. Growth, 493, 51 (2018).

    Article  CAS  Google Scholar 

  34. J. Nourmohammadi, F. Roshanfar, M. Farokhi, and M. H. Nazarpak, Mater. Sci. Eng. C-Mater. Biol. Appl., 76, 951 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31771039, 51373071), the Fundamental Research Funds for the Central Universities (JUSRP51717A), the 111 Project (B17021) and Qing Lan Project of Jiangsu Province (SJ2016-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhou, Q., Wang, P. et al. Phosphorylation of Silk Fibroin via Maillard Reaction and Its Behavior of Biomimetic Mineralization. Fibers Polym 20, 1616–1623 (2019). https://doi.org/10.1007/s12221-019-9062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9062-1

Keywords

Navigation