Skip to main content
Log in

Europium-phenolic network coated BaGdF5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Multifunctional nanocomposites based on BaGdF5 nanoparticles (NPs) and metal phenolic network (MPN) have been engineered as novel contrast agents for potential applications in X-ray computed tomography, magnetic resonance and luminescence imaging. The BaGdF5@MPN nanocomposites were synthesized at room temperature by coating BaGdF5 NPs with europium-phenolic network, which was obtained by the coordination of europium (III) with tannic acid (TA). The in vitro cytotoxicity assays against HepG2 cells revealed that the BaGdF5@MPN nanocomposites presented better cytocompatibility and lower cytotoxity than pure BaGdF5 NPs. In addition, vivid red and green luminescence can be observed by confocal laser scanning microscope (CLSM) from the BaGdF5@MPN nanocomposites laden HepG2 cells under the excitation of UV (390 nm) and visible light (440 nm), respectively. The longitudinal relaxivity value (r1) of the nanocomposites was 2.457 mM−1s−1. Moreover, the nanocomoposites exhibited X-ray computed tomography (CT) and T1-weighted magnetic resonance (MR) imaging capacities, and the intensities of the enhanced signals of in vitro CT and MR images were proportional to the concentrations of the nanocomposites. These results indicated that the as-prepared BaGdF5@MPN nanocomposites are promising contrast agents for CT/MR/luminescence imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9.

    Article  Google Scholar 

  2. Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiol. 2012;263:633–43.

    Article  Google Scholar 

  3. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:R29–43.

    Article  Google Scholar 

  4. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113:1641–66.

    Article  Google Scholar 

  5. Lusic H, Grinstaff MW. Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology. 2005;236:565–71.

    Article  Google Scholar 

  6. Leach MO. Breast cancer screening in women at high risk using MRI. NMR Biomed. 2009;22:17–27.

    Article  Google Scholar 

  7. Hu H, Cheng KL, Xu XQ, Wu FY, Tyan YS, Tsai CH, et al. Predicting the prognosis of oral tongue carcinoma using a simple quantitative measurement based on preoperative MR imaging: tumor thickness versus tumor volume. Am J Neuroradiol. 2015;36:1338–42.

    Article  Google Scholar 

  8. Burbach JP, Kleijnen JP, Reerink O, Seravalli E, Philippens ME, Schakel T, et al. Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiotherapy Oncol. 2016;118:399–407.

    Article  Google Scholar 

  9. Thomas JA. Optical imaging probes for biomolecules: an introductory perspective. Chem Soc Rev. 2015;44:4494–500.

    Article  Google Scholar 

  10. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur. Radiol. 2008;18:2021–32.

    Article  Google Scholar 

  11. Tang YH, Zhang CF, Wang JX, Lin XJ, Zhang L, Yang Y, et al. MRI/SPECT/Fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25:1024–34.

    Article  Google Scholar 

  12. Lobatto ME, Calcagno C, Millon A, Senders ML, Fay F, Robson PM, et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano. 2015;9:1837–47.

    Article  Google Scholar 

  13. Cherukula K, Lekshmi KM, Uthaman S, Cho K, Cho CS, Park IK. Multifunctional inorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials. 2016;6:76–101.

    Article  Google Scholar 

  14. Yu SB, Watson AD. Metal-based X-ray contrast media. Chem Rev. 1999;99:2353–77.

    Article  Google Scholar 

  15. Yang DM, Dai YL, Liu JH, Zhou Y, Chen YY, Li CH, et al. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials. 2014;35:2011–23.

    Article  Google Scholar 

  16. Zhang H, Wu HX, Wang J, Yang Y, Wu DM, Zhang YJ, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77.

    Article  Google Scholar 

  17. Zeng SJ, Tsang MK, Chan CF, Wong KL, Hao JH. PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials. 2012;33:9232–8.

    Article  Google Scholar 

  18. Rodriguez-Contreras A, Marques-Calvo MS, Gil FJ, Manero JM. Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications. J Mater Sci Mater Med. 2016;27:124–38.

    Google Scholar 

  19. Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Delivery Rev. 2011;63:152–60.

    Article  Google Scholar 

  20. Hatakeyama H, Akita H, Harashima H. The Polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36:892–9.

    Article  Google Scholar 

  21. Hama S, Itakura S, Nakai M, Nakayama K, Morimoto S, et al. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J. Control Release. 2015;206:67–74.

    Article  Google Scholar 

  22. Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341:154–7.

    Article  Google Scholar 

  23. Ejima H, Richardson JJ, Caruso F. Phenolic film engineering for template-mediated microcapsule preparation. Polymer J. 2014;46:452–9.

    Article  Google Scholar 

  24. Guo JL, Ping Y, Ejima H, Alt K, Meissner M, Richardson JJ, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed Engl. 2014;53:5546–51.

    Article  Google Scholar 

  25. Guo JL, Wang XW, Henstridge DC, Richardson JJ, Cui JW, Sharma A, et al. Nanoporous metal-phenolic particles as ultrasound imaging probes for hydrogen peroxide. Adv Healthcare Mater. 2015;4:2170–5.

    Article  Google Scholar 

  26. Ping Y, Guo JL, Ejima H, Chen X, Richardson JJ, Sun HL, et al. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small. 2015;11:2032–6.

    Article  Google Scholar 

  27. Liang HS, Li J, He Y, Xu W, Liu SL, Li Y, et al. Engineering multifunctional films based on metal-phenolic networks for rational pH-responsive delivery and cell imaging. ACS Biomater Sci Eng. 2016;2:317–25.

    Article  Google Scholar 

  28. Bünzli JCG. On the design of highly luminescent lanthanide complexes. Coordin Chem Rev. 2015;293–4:19–47.

    Article  Google Scholar 

  29. Ju Q, Tu DT, Liu YS, Li RF, Zhu HM, Chen JC, et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc. 2012;134:1323–30.

    Article  Google Scholar 

  30. Zhang L, Liang S, Liu RQ, Yuan TM, Zhang SL, Xu ZS, et al. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Col Surf B Biointerf. 2016;144:344–54.

    Article  Google Scholar 

  31. Zhou B, Jing X, Li J, Xu Wei, Liu SL, Li Y, et al. Vacuum-assisted layer-by-layer electrospun membranes: antibacterial and antioxidative applications. RSC Adv. 2014;4:54517–24.

    Article  Google Scholar 

  32. Sahiner N, Sagbas S, Aktas N. Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Mat Sci Eng C. 2015;49:824–34.

    Article  Google Scholar 

  33. Xu CF, Ma M, Yang LW, Zeng SJ, Yang QB. Upconversion luminescence and magnetic properties of ligand-free monodisperse lanthanide doped BaGdF5 nanocrystals. J Lumin. 2011;131:2544–9.

    Article  Google Scholar 

  34. Lin DH, Xing BS. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ Sci Technol. 2008;42:5917–23.

    Article  Google Scholar 

  35. Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10:89–96.

    Article  Google Scholar 

  36. Abdesselem M, Schoeffel M, Maurin I, Ramodiharilafy R, Autret G, Clement O, et al. Multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano. 2014;8:11126–37.

    Article  Google Scholar 

  37. Shao GS, Han RC, Ma Y, Tang MX, Xue FM, Sha YL, et al. Bionanoprobes with excellent two-photon-sensitized Eu3+ luminescence properties for live cell imaging. Chem Eur J. 2010;16:8647–51.

    Article  Google Scholar 

  38. Pan YF, Zheng A, Hu FZ, Xiao HN. Copolymers of styrene with a quaternary europium complex. J Appl Polym Sci. 2006;100:1506–10.

    Article  Google Scholar 

  39. Liu RQ, Liang S, Jiang C, Zhang L, Yuan TM, Li PH, et al. Smart polymeric particle encapsulated gadolinium oxide and europium: theranostic probes for magnetic resonance/optical imaging and antitumor drug delivery. J Mater Chem B. 2016;4:1100–07.

    Article  Google Scholar 

  40. Xiao LS, Mertens M, Wortmann L, Kremer S, Valldor M, Lammers T, et al. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl Mater Interfaces. 2015;7:6530–40.

    Article  Google Scholar 

  41. Majeed S, Shivashankar SA. Rapid, microwave-assisted synthesis of Gd2O3 and Eu:Gd2O3 nanocrystals: characterization, magnetic, optical and biological studies. J Mater Chem B. 2014;2:5585–93.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51573039, 81171386 and 31500773) and Science and Technology Key Projects of Shenzhen (No. JCYJ20150401150223643).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zushun Xu, Haibo Xu or Penghui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Wei Zhu and Shuang Liang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Liang, S., Wang, J. et al. Europium-phenolic network coated BaGdF5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging. J Mater Sci: Mater Med 28, 74 (2017). https://doi.org/10.1007/s10856-017-5888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5888-5

Navigation