Skip to main content

Advertisement

Log in

Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano—to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102. doi:10.1016/s1350-4533(98)00007-1.

    Article  Google Scholar 

  2. Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Exp Gerontol. 2014;55:19–28.

    Article  Google Scholar 

  3. Seeman E, Delmas PD. Bone quality -- The material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61. doi:10.1056/NEJMra053077.

    Article  Google Scholar 

  4. Djonic D, Milovanovic P, Djuric M. Basis of bone strength vs. bone fragility: a review of determinants of age-related hip fracture risk. Srp Arh Celok Lek. 2013;141(7–8):548–52. doi:10.2298/sarh1308548d.

    Article  Google Scholar 

  5. Milovanovic P, Djuric M, Rakocevic Z. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in AFM topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae. J Anat. 2012;221(5):427–33.

    Article  Google Scholar 

  6. Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81. doi:10.1016/j.biomaterials.2014.03.066.

    Article  Google Scholar 

  7. Currey JD. Bones: structure and mechanics. Princeton, N. J.: Princeton University Press; 2002.

    Google Scholar 

  8. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA. 2006;103(47):17741–6.

    Article  Google Scholar 

  9. Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, et al. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int. 2013;24(10):2671–80. doi:10.1007/s00198-013-2374-x.

    Article  Google Scholar 

  10. Skedros JG, Keenan KE, Williams TJ, Kiser CJ. Secondary osteon size and collagen/lamellar organization (“osteon morphotypes”) are not coupled, but potentially adapt independently for local strain mode or magnitude. J Struct Biol. 2013;181(2):95–107. doi:10.1016/j.jsb.2012.10.013.

    Article  Google Scholar 

  11. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Püschel K, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51. doi:10.1021/nn401360u.

    Article  Google Scholar 

  12. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26(4):375–80.

    Article  Google Scholar 

  13. Fritton SP, Weinbaum S. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech. 2008;41(1):347–74. doi:10.1146/annurev.fluid.010908.165136.

    Article  Google Scholar 

  14. Smit TH, Huyghe JM, Cowin SC. Estimation of the poroelastic parameters of cortical bone. J Biomech. 2002;35(6):829–35. doi:10.1016/s0021-9290(02)00021-0.

    Article  Google Scholar 

  15. Cole Z, Dennison E, Cooper C. Osteoporosis epidemiology update. Curr Rheum Rep. 2008;10(2):92–6. doi:10.1007/s11926-008-0017-6.

    Article  Google Scholar 

  16. Ström O, Borgström F, Kanis J, Compston J, Cooper C, McCloskey E, et al. Osteoporosis: burden, health care provision and opportunities in the EU. Arch Osteoporos. 2011;6(1–2):59–155. doi:10.1007/s11657-011-0060-1.

    Article  Google Scholar 

  17. De Laet CE, van Hout BA, Burger H, Hofman A, Pols HA. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ. 1997;315(7102):221–5.

    Article  Google Scholar 

  18. Djuric M, Djonic D, Milovanovic P, Nikolic S, Marshall R, Marinkovic J, et al. Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility. Calcif Tissue Int. 2010;86(3):192–201. doi:10.1007/s00223-009-9325-8.

    Article  Google Scholar 

  19. Milovanovic P, Djonic D, Marshall RP, Hahn M, Nikolic S, Zivkovic V, et al. Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. Bone. 2012;50(1):63–8. doi:10.1016/j.bone.2011.09.044.

    Article  Google Scholar 

  20. Bell KL, Loveridge N, Jordan GR, Power J, Constant CR, Reeve J. A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone. 2000;27(2):297–304.

    Article  Google Scholar 

  21. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, et al. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999;14(1):111–9. doi:10.1359/jbmr.1999.14.1.111.

    Article  Google Scholar 

  22. Bell KL, Loveridge N, Reeve J, Thomas CDL, Feik SA, Clement JG. Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec. 2001;264(4):378–86. doi:10.1002/ar.10014.

    Article  Google Scholar 

  23. Cui WQ, Won YY, Baek MH, Lee DH, Chung YS, Hur JH, et al. Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae. Osteoporos Int. 2008;19(11):1579–87.

    Article  Google Scholar 

  24. Busse B, Hahn M, Schinke T, Püschel K, Duda GN, Amling M. Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A. 2010;92A(4):1440–51.

    Google Scholar 

  25. Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M, Rupprecht M, et al. Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res. 2010;28(1):18–26. doi:10.1002/jor.20957.

    Google Scholar 

  26. Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone. 2013;53(2):451–8. doi:10.1016/j.bone.2013.01.015.

    Article  Google Scholar 

  27. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31. doi:10.1359/jbmr.050916.

    Article  Google Scholar 

  28. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62. doi:10.1002/jbmr.171.

    Article  Google Scholar 

  29. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. doi:10.1111/j.1474-9726.2010.00633.x.

    Article  Google Scholar 

  30. Hannah KM, Thomas CDL, Clement JG, De Carlo F, Peele AG. Bimodal distribution of osteocyte lacunar size in the human femoral cortex as revealed by micro-CT. Bone. 2010;47(5):866–71. doi:10.1016/j.bone.2010.07.025.

    Article  Google Scholar 

  31. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Differences in osteocyte and lacunar density between black and white American women. Bone. 2006;38(1):130–5. doi:10.1016/j.bone.2005.07.004.

    Article  Google Scholar 

  32. Vashishth D, Gibson GJ, Fyhrie DP. Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone. Anat Rec A. 2005;282A(2):157–62. doi:10.1002/ar.a.20146.

    Article  Google Scholar 

  33. Mullender M, Tan S, Vico L, Alexandre C, Klein-Nulend J. Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcif Tissue Int. 2005;77(5):291–6.

    Article  Google Scholar 

  34. Mullender MG, Huiskes R, Versleyen H, Buma P. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res. 1996;14(6):972–9. doi:10.1002/jor.1100140618.

    Article  Google Scholar 

  35. Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DML. Variation in osteocyte lacunar morphology and density in the human femur — a synchrotron radiation micro-CT study. Bone. 2013;52(1):126–32. doi:10.1016/j.bone.2012.09.010.

    Article  Google Scholar 

  36. Marotti G, Ferretti M, Remaggi F, Palumbo C. Quantitative evaluation on osteocyte canalicular density in human secondary osteons. Bone. 1995;16(1):125–8. doi:10.1016/8756-3282(95)80022-i.

    Article  Google Scholar 

  37. Cardoso L, Fritton SP, Gailani G, Benalla M, Cowin SC. Advances in assessment of bone porosity, permeability and interstitial fluid flow. J Biomech. 2014;46(2):253–65. doi:10.1016/j.jbiomech.2012.10.025.

    Article  Google Scholar 

  38. Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004;34(3):499–509. doi:10.1016/j.bone.2003.11.022.

    Article  Google Scholar 

  39. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res. 2005;20(4):625–34. doi:10.1359/jbmr.041217.

    Article  Google Scholar 

  40. Webb PA, Orr C. Analytical methods in fine particle technology. Norcross, GA: Micromeritics Instrument Corporation; 1997.

    Google Scholar 

  41. Nielsen-Marsh CM, Hedges REM. Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies*. Archaeometry. 1999;41(1):165–74. doi:10.1111/j.1475-4754.1999.tb00858.x.

    Article  Google Scholar 

  42. Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater. 2007;23(6):674–8. doi:10.1016/j.dental.2006.06.006.

    Article  Google Scholar 

  43. Murakami Y, Honda Y, Anada T, Shimauchi H, Suzuki O. Comparative study on bone regeneration by synthetic octacalcium phosphate with various granule sizes. Acta Biomater. 2010;6(4):1542–8. doi:10.1016/j.actbio.2009.10.023.

    Article  Google Scholar 

  44. Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes—Comparison with human bone. J Biomed Mater Res Part B Appl Biomater. 2010;92B(2):409–19. doi:10.1002/jbm.b.31529.

    Article  Google Scholar 

  45. Washburn EW. Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci. 1921;7(4):115–6.

    Article  Google Scholar 

  46. Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catal Today. 1998;41(1–3):207–19. doi:10.1016/S0920-5861(98)00050-9.

    Article  Google Scholar 

  47. Milovanovic P, Adamu U, Simon MJK, Rolvien T, Djuric M, Amling M. et al. Age- and sex-specific bone structure patterns portend bone fragility in radii and tibiae in relation to osteodensitometry: a high-resolution peripheral quantitative computed tomography study in 385 individuals. J Gerontol A Biol Sci Med Sci. 2015; in press. doi:10.1093/gerona/glv052.

  48. Nirody JA, Cheng KP, Parrish RM, Burghardt AJ, Majumdar S, Link TM, et al. Spatial distribution of intracortical porosity varies across age and sex. Bone. 2015;75(0):88–95. doi:10.1016/j.bone.2015.02.006.

    Article  Google Scholar 

  49. Kazakia GJ, Nirody JA, Bernstein G, Sode M, Burghardt AJ, Majumdar S. Age- and gender-related differences in cortical geometry and microstructure: improved sensitivity by regional analysis. Bone. 2013;52(2):623–31.

    Article  Google Scholar 

  50. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25(4):882–90. doi:10.1359/jbmr.091020.

    Google Scholar 

  51. Bell KL, Loveridge N, Power J, Rushton N, Reeve J. Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int. 1999;10(3):248–57. doi:10.1007/s001980050223.

    Article  Google Scholar 

  52. Lin Y, Xu S. AFM analysis of the lacunar-canalicular network in demineralized compact bone. J Microsc. 2011;241(3):291–302. doi:10.1111/j.1365-2818.2010.03431.x.

    Article  Google Scholar 

  53. McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech. 2004;37(4):563–72. doi:10.1016/s0021-9290(03)00287-2.

    Article  Google Scholar 

  54. Dong P, Haupert S, Hesse B, Langer M, Gouttenoire P-J, Bousson V, et al. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone. 2014;60(0):172–85. doi:10.1016/j.bone.2013.12.008.

    Article  Google Scholar 

  55. Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57(1):142–54. doi:10.1016/j.bone.2013.06.026.

    Article  Google Scholar 

  56. Klein-Nulend J, Bakker A. Osteocytes: mechanosensors of bone and orchestrators of mechanical adaptation. Clin Rev Bone Miner Metab. 2007;5(4):195–209. doi:10.1007/s12018-008-9014-6.

    Article  Google Scholar 

  57. Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42(1):193–9. doi:10.1016/j.bone.2007.09.049.

    Article  Google Scholar 

  58. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW. Three structural roles for water in bone observed by solid-state NMR. Biophys J. 2006;90(10):3722–31. doi:10.1529/biophysj.105.070243.

    Article  Google Scholar 

  59. Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 2011;7(9):3446–51.

    Article  Google Scholar 

  60. Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7(1):16–30. doi:10.1016/j.actbio.2010.07.012.

    Article  Google Scholar 

  61. Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, et al. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol. 2012;47(2):154–9. doi:10.1016/j.exger.2011.11.011.

    Article  Google Scholar 

  62. Milovanovic P, Zimmermann EA, vom Scheidt A, Hoffmann B, Sarau G, Yorgan T, et al. The formation of calcified nano-pearls during micropetrosis represents a unique mineralization mechanism in aged human bone. Small 2017;13(3):1602215. doi:10.1002/smll201602215.

  63. Milovanovic P, Zimmermann EA, Riedel C, Scheidt Av, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45(0):46–55. doi:10.1016/j.biomaterials.2014.12.024.

    Article  Google Scholar 

  64. Cowin SC, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 2015;48(5):842–54. doi:10.1016/j.jbiomech.2014.12.013.

    Article  Google Scholar 

  65. Gailani G, Benalla M, Mahamud R, Cowin SC, Cardoso L. Experimental determination of the permeability in the Lacunar-Canalicular porosity of bone. J Biomech Eng. 2009;131(10):101007.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant numbers III 45005 and III 45001) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Djuric.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanovic, P., Vukovic, Z., Antonijevic, D. et al. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone. J Mater Sci: Mater Med 28, 71 (2017). https://doi.org/10.1007/s10856-017-5878-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5878-7

Navigation