Skip to main content

Advertisement

Log in

Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Grafting of quaternary nitrogen atoms into the backbone of polymer is an efficient way of developing new generation antimicrobial polymeric wound dressing. In this study, an elastic, non-adhesive and antimicrobial transparent hydrogel based dressing has been designed, which might be helpful for routine observation of wound area without removing the dressing material along with maintaining a sterile environment for a longer period of time. Green synthesized silver nanoparticles have been loaded into the quaternized PVA hydrogel matrix to improve its antimicrobial property. Silver nanoparticles loaded quaternized PVA hydrogel showed enhanced mechanical and swelling properties compared to native quaternized PVA hydrogel. Release kinetics evaluated by atomic absorption spectroscopy revealed that the release mechanism of silver nanoparticles from the hydrogel follows Fickian diffusion. Antimicrobial efficacy of the hydrogels was evaluated by disk diffusion test on Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. After 96 h of release in phosphate buffer, the growth inhibition zone created by silver nanoparticless loaded quaternized PVA hydrogel is comparable to that created by ampicillin. These observations assert that the silver nanoparticles loaded quaternized PVA hydrogel acts as a reservoir of silver nanoparticles, which helps in maintaining a sterile environment for longer time duration by releasing Ag nanocrystallite in sustained manner.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sakai S, Tsumura M, Inoue M, Koga Y, Fukano K, Taya M. Polyvinyl alcohol-based hydrogel dressing gellable on-wound via a co-enzymatic reaction triggered by glucose in the wound exudate. J Mater Chem B. 2013;1(38):5067–75.

    Article  Google Scholar 

  2. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.

    Article  Google Scholar 

  3. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS, Krogfelt KA, et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol. 2009;47(12):4084–9.

    Article  Google Scholar 

  4. Melaiye A, Youngs WJ. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat. 2005;15(2):125–30.

    Article  Google Scholar 

  5. Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 2006;1(4):441

    Article  Google Scholar 

  6. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS. The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns. 2007;33(8):979–85.

    Article  Google Scholar 

  7. Poon VK, Burd A. In vitro cytotoxity of silver: implication for clinical wound care. Burns. 2004;30(2):140–7.

    Article  Google Scholar 

  8. Cortese-Krott MM, Münchow M, Pirev E, Heβner F, Bozkurt A, Uciechowski P, et al. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic Biol Med. 2009;47(11):1570–7.

    Article  Google Scholar 

  9. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med. 2007;3(1):95–101.

    Article  Google Scholar 

  10. Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol. 2011;39(1):77–85.

    Google Scholar 

  11. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. Size‐dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A. 2012;100(4):1033–43.

    Article  Google Scholar 

  12. Kora AJ, Beedu SR, Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic Med Chem Lett. 2012;2(1):1–10.

    Article  Google Scholar 

  13. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, You-Sheng O-Y, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–22.

    Article  Google Scholar 

  14. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73(11):1417–23.

    Article  Google Scholar 

  15. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.

    Article  Google Scholar 

  16. Bhowmick S, Koul V. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Mater Sci Eng C. 2016;59:109–19.

    Article  Google Scholar 

  17. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, et al. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10(6):1429–35.

    Article  Google Scholar 

  18. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–401.

    Article  Google Scholar 

  19. Widgerow AD. Nanocrystalline silver, gelatinases and the clinical implications. Burns. 2010;36(7):965–74.

    Article  Google Scholar 

  20. Tocco I, Zavan B, Bassetto F, Vindigni V. Nanotechnology-based therapies for skin wound regeneration. J Nanomater. 2012;2012:4

    Article  Google Scholar 

  21. Liu X, Py Lee, Ho CM, Lui VC, Chen Y, Che CM, et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5(3):468–75.

    Article  Google Scholar 

  22. Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer (Guildf). 1999;40(22):6189–98.

    Article  Google Scholar 

  23. Feiertag P, Albert M, Ecker‐Eckhofen EM, Hayn G, Hönig H, Oberwalder HW, et al. Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun. 2003;24(9):567–70.

    Article  Google Scholar 

  24. Albert M, Feiertag P, Hayn G, Saf R, Hönig H. Structure–activity relationships of oligoguanidines influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules. 2003;4(6):1811–7.

    Article  Google Scholar 

  25. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly (vinyl‐N‐hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.

    Article  Google Scholar 

  26. Tiller JC, Liao C-J, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci. 2001;98(11):5981–5.

    Article  Google Scholar 

  27. Park ES, Kim HS, Kim MN, San Yoon J. Antibacterial activities of polystyrene-block-poly (4-vinyl pyridine) and poly (styrene-random-4-vinyl pyridine). Eur Polym J. 2004;40(12):2819–22.

    Article  Google Scholar 

  28. Li G, Shen J. A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):676–84.

    Article  Google Scholar 

  29. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.

    Article  Google Scholar 

  30. Muñoz-Bonilla A, Fernández-García M. The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J. 2015;65:46–62.

    Article  Google Scholar 

  31. Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.

    Article  Google Scholar 

  32. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother. 2001;48(1):7–13.

    Article  Google Scholar 

  33. Gottenbos B, van der Mei HC, Klatter F, Grijpma DW, Feijen J, Nieuwenhuis P, et al. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24(16):2707–10.

    Article  Google Scholar 

  34. Sauvet G, Dupond S, Kazmierski K, Chojnowski J. Biocidal polymers active by contact. V. Synthesis of polysiloxanes with biocidal activity. J Appl Polym Sci. 2000;75(8):1005–12.

    Article  Google Scholar 

  35. Mizerska U, Fortuniak W, Chojnowski J, Hałasa R, Konopacka A, Werel W. Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur Polym J. 2009;45(3):779–87.

    Article  Google Scholar 

  36. Caillier L, de Givenchy ET, Levy R, Vandenberghe Y, Geribaldi S, Guittard F. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci. 2009;332(1):201–7.

    Article  Google Scholar 

  37. Thebault P, de Givenchy ET, Géribaldi S, Levy R, Vandenberghe Y, Guittard F. Surface and antimicrobial properties of semi-fluorinated quaternary ammonium thiol surfactants potentially usable for self-assembled monolayers. J Fluor Chem. 2010;131(5):592–6.

    Article  Google Scholar 

  38. Yang M, Santerre JP. Utilization of quinolone drugs as monomers: characterization of the synthesis reaction products for poly (norfloxacin diisocyanatododecane polycaprolactone). Biomacromolecules. 2001;2(1):134–41.

    Article  Google Scholar 

  39. Halevy R, Rozek A, Kolusheva S, Hancock RE, Jelinek R. Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides. 2003;24(11):1753–61.

    Article  Google Scholar 

  40. Tamaki M, Kokuno M, Sasaki I, Suzuki Y, Iwama M, Saegusa K, et al. Syntheses of low-hemolytic antimicrobial gratisin peptides. Bioorg Med Chem Lett. 2009;19(10):2856–9.

    Article  Google Scholar 

  41. Béven L, Castano S, Dufourcq J, Wieslander Å, Wróblewski H. The antibiotic activity of cationic linear amphipathic peptides: lessons from the action of leucine/lysine copolymers on bacteria of the class Mollicutes. Eur J Biochem. 2003;270(10):2207–17.

    Article  Google Scholar 

  42. Jiang Q, Xu J, Li T, Qiao C, Li Y. Synthesis and antibacterial activities of quaternary ammonium salt of gelatin. J Macromol Sci Part B. 2014;53(1):133–41.

    Article  Google Scholar 

  43. Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–48.

    Article  Google Scholar 

  44. Cydzik M, Rudowska M, Stefanowicz P, Szewczuk Z. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI‐MS. J Pept Sci. 2011;17(6):445–53.

    Article  Google Scholar 

  45. Zhu P, Sun G. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci. 2004;93(3):1037–41.

    Article  Google Scholar 

  46. Gupta S, Goswami S, Sinha A. A combined effect of freeze–thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater. 2012;7(1):015006.

    Article  Google Scholar 

  47. Liu Y, Chan-Park MB. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 2009;30(2):196–207.

    Article  Google Scholar 

  48. Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med. 2009;3(7):567–72. doi: 10.1002/term.193

    Article  Google Scholar 

  49. Peppas NA, Stauffer SR. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release. 1991;16(3):305–10.

    Article  Google Scholar 

  50. Li JK, Wang N, Wu XS. Poly (vinyl alcohol) nanoparticles prepared by freezing–thawing process for protein/peptide drug delivery. J Control Release. 1998;56(1):117–26.

    Article  Google Scholar 

  51. Bhowmick S, Das DK, Maiti AK, Chakraborty C. Structural and textural classification of erythrocytes in anaemic cases: a scanning electron microscopic study. Micron. 2013;44:384–94.

    Article  Google Scholar 

  52. Bhowmick S, Das DK, Maiti AK, Chakraborty C. Computer-aided diagnosis of thalassemia using scanning electron microscopic images of peripheral blood: a morphological approach. J Med Imag Health Inform. 2012;2(3):215–21.

    Article  Google Scholar 

  53. Bhowmick S, Scharnweber D, Koul V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials. 2016;88:83–96. doi: 10.1016/j.biomaterials.2016.02.034

    Article  Google Scholar 

  54. Koul V, Bhowmick S, Thanusha AV. Hydrogels for pharmaceutical applications. Handbook of polymers for pharmaceutical technologies. Wiley; Hoboken 2015. p. 125-44.

  55. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  Google Scholar 

  56. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  Google Scholar 

  57. Ye L, Zhai L, Fang J, Liu J, Li C, Guan R. Synthesis and characterization of novel cross-linked quaternized poly(vinyl alcohol) membranes based on morpholine for anion exchange membranes. Solid State Ionics. 2013;240:1–9. doi: 10.1016/j.ssi.2013.03.019

    Article  Google Scholar 

  58. Jaiswal M, Dinda AK, Gupta A, Koul V. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery. Biomed Mater. 2010;5(6):065014

    Article  Google Scholar 

  59. Boonkaew B, Kempf M, Kimble R, Supaphol P, Cuttle L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns. 2014;40(1):89–96.

    Article  Google Scholar 

  60. Parsons D, Bowler P, Myles V, Jones S. Silver antimicrobial dressings in wound management: a comparison of antibacterial, physical, and chemical characteristics. Wounds Compend Clin Res Prac. 2005;17(8):222–32.

    Google Scholar 

  61. Dunn K, Edwards-Jones V. The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns. 2004;30:S1–S9.

    Article  Google Scholar 

  62. Deitch EA, Marino AA, Malakanok V, Albright JA. Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma. 1987;27(3):301–4.

    Article  Google Scholar 

  63. Xiong Y, Fang J, Zeng QH, Liu QL. Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membr Sci. 2008;311(1):319–25.

    Article  Google Scholar 

  64. Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23(22):4325–32.

    Article  Google Scholar 

  65. Wan W, Campbell G, Zhang Z, Hui A, Boughner D. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J Biomed Mater Res. 2002;63(6):854–61.

    Article  Google Scholar 

  66. Nagura M, Hamano T, Ishikawa H. Structure of poly (vinyl alcohol) hydrogel prepared by repeated freezing and melting. Polymer (Guildf). 1989;30(4):762–5.

    Article  Google Scholar 

  67. Mbhele Z, Salemane M, Van Sittert C, Nedeljkovic J, Djokovic V, Luyt A. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater. 2003;15(26):5019–24.

    Article  Google Scholar 

  68. Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S, et al. Composition dependent structural modulations in transparent poly (vinyl alcohol) hydrogels. Colloids Surf B. 2009;74(1):186–90.

    Article  Google Scholar 

  69. Gupta S, Webster TJ, Sinha A. Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J Mater Sci Mater Med. 2011;22(7):1763–72.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge IIT Delhi for the financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Koul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, S., Mohanty, S. & Koul, V. Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. J Mater Sci: Mater Med 27, 160 (2016). https://doi.org/10.1007/s10856-016-5772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5772-8

Keywords

Navigation