Skip to main content
Log in

Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Several types of biodegradable materials have been investigated for the treatment of osteomyelitis. Calcium phosphate (CaP) ceramics are among the most performing materials due to their resemblance to human hard tissues in terms of mineralogical composition, and proven ability to adsorb and deliver a number of drugs. This research work was intended to study the suitability of modified CaP powders loaded with a fluoroquinolone as drug delivery systems for osteomyelitis treatment. Levofloxacin (LEV) was chosen due to the well-recognized anti-staphylococcal activity and adequate penetration into osteoarticular tissues. Substituted CaP powders (5 mol% Sr2+ or 5 mol% Mg2+) were synthesised through aqueous precipitation. The obtained powders were characterised by X-ray diffraction, SEM and FTIR analysis. The X-ray diffraction patterns confirmed the presence of HA and β-tricalcium phosphates (β-TCP) phases in doped compositions, especially in the case of Mg-doped system. The fixation of LEV at the surface of the particles occurred only by physisorption. Both the in vitro microbiological susceptibility, against Staphylococcus spp, and biocompatibility of LEV-loaded CaP powders have not been compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364:79–369.

    Article  Google Scholar 

  2. Lima ALL, Oliveira PR, Carvalho VC, et al. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526–34.

    Article  Google Scholar 

  3. Mader JT, Stevens CM, Stevens JH, et al. Treatment of experimental osteomyelitis with a fibrin sealant antibiotic implant. Clin Orthop Relat Res. 2002;403:58–72.

    Article  Google Scholar 

  4. Soundrapandian C, Datta S, Sa B. Drug-eluting implants for osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2007;24(6):493–545.

    Article  Google Scholar 

  5. Soundrapandian C, Sa B, Datta S. Organic-inorganic composites for bone drug delivery. AAPS PharmSciTech. 2009;10(4):1158–71.

    Article  Google Scholar 

  6. Chen L, Wang H, Wang J, et al. Ofloxacin-delivery system of a polyanhydride and polylactide blend used in the treatment of bone infection. J Biomed Mater Res B. 2007;83(2):589–95.

    Article  Google Scholar 

  7. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg. 2002;10:53–60.

    Google Scholar 

  8. Samit KN, Prasenjit M, Subhasis R, et al. Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Eng C. 2009;29:2478–85.

    Article  Google Scholar 

  9. Azi ML, Junior MK, Martinez R, et al. Bone cement and gentamicin in the treatment of bone infection: background and in vitro study. Acta Ortop Bras. 2010;18(1):31–4.

    Article  Google Scholar 

  10. Klemm KW. Antibiotic bead chains. Clin Orthop. 1993;295:63–76.

    Google Scholar 

  11. Wei G, Kotoura Y, Oka M. Bioabsorbable delivery system for antibiotic treatment of osteomyelitis. J Bone Joint Surg. 1991;73(B):246–52.

    Google Scholar 

  12. Koort JK, Mäkinen TJ, Suokas E, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:1502–8.

    Article  Google Scholar 

  13. Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59(6):1223–32.

    Article  Google Scholar 

  14. El-Ghannam A, Jahed K, Omran M. Nanoporous delivery system to treat osteomyelitis and regenerate bone: gentamicin release kinetics and bactericidal effect. J Biomed Mater Res B. 2005;73:277–84.

    Article  Google Scholar 

  15. El-Ghannam A, Jahed K, Govindaswami M. Resorbable bioactive ceramicfor treatment of bone infection. J Biomed Mater Res A. 2010;94:308–16.

    Article  Google Scholar 

  16. Uskokovic´ V, Desai TA. Phase composition control of calcium phosphatenanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. J Biomed Mater Res A. 2013;101:1416–26.

    Article  Google Scholar 

  17. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7–8):1279–87.

    Article  Google Scholar 

  18. Ghosh SK, Nandi SK, Kundu B, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B. 2008;86(1):217–27.

    Article  Google Scholar 

  19. de Lima IR, Alves GG, Soriano CA, et al. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98(A):351–8.

    Article  Google Scholar 

  20. Ergun C, Webster TJ, Bizios R, et al. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res. 2002;59:305–11.

    Article  Google Scholar 

  21. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  Google Scholar 

  22. Kannan S, Lemos AF, Ferreira JMF. Synthesis and mechanical performance of biological-like hydroxyapatites. Chem Mater. 2006;18(8):2181–6.

    Article  Google Scholar 

  23. Pina S, Vieira SI, Rego P, et al. Biological responses of brushite-forming Zn- and ZnSr-substituted β-tricalcium phosphate bone cements. Eur Cells Materials. 2010;20:162–77.

    Google Scholar 

  24. LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1–201.

    Article  Google Scholar 

  25. Ren F, Leng Y, Xin R, et al. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.

    Article  Google Scholar 

  26. Gibson IR, Bonfield W. Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci. 2002;13:685–93.

    Google Scholar 

  27. Rimmelé T, Boselli E, Breilh D, et al. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004;53:533–5.

    Article  Google Scholar 

  28. Holtom PD, Pavkovic SA, Bravos PD, et al. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res. 2000;18(5):721–7.

    Article  Google Scholar 

  29. Arcos D, Rodriguez Carvajal J, Vallet Regi M. The effect of the silicon incorporation on the hydroxyapatite structure. A neutron diffraction study. Solid State Sci. 2004;6:987–94.

    Article  Google Scholar 

  30. Nicolopoulos S, Gonzalez Calbet JM, Alonso MP, Gutierrez Rios MT, De Frutos MI, Vallet Regi M. Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compounds. J. Solid State Chem. 1995;116:265–74.

    Article  Google Scholar 

  31. Hart E, Azzopardi K, Taing H, et al. Efficacy of antimicrobial polymer coatings in an animal model of bacterial infection associated with foreign body implants. J Antimicrob Chemother. 2010;65:974–80.

    Article  Google Scholar 

  32. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. 9th ed. CLSI: Wayne; 2012.

  33. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial. 560 Susceptibility Testing, Seventeenth Informational Supplement, M100–S17. CLSI: Wayne; 2007.

  34. Cadete A, Figueiredo L, Lopes R, et al. Development and characterization of a new plasmid delivery system based on chitosan-sodium deoxycholate nanoparticles. Eur J Pharm Sci. 2012;45:451–8.

    Article  Google Scholar 

  35. Lopes R, Eleutério CV, Gonçalves LMD, et al. Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci. 2012;45:442–50.

    Article  Google Scholar 

  36. Matos A, Gonçalves LM, Rijo P, et al. A novel modified acrylic bone cement matrix. a step forward on antibiotic deliver against multiresistant bacteria responsible for prosthetic joint infections. Mater Sci Eng C. 2014;38:218–26.

    Article  Google Scholar 

  37. Torres PMC, Abrantes JCC, Kaushal A, Pina S, Döbelin N, Bohner M, Ferreira JMF. Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α↔ β-tricalcium phosphate phase transformations. J Eur Ceram Soc. 2016;36(3):817–27.

    Article  Google Scholar 

  38. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002;62(4):600–12.

    Article  Google Scholar 

  39. Shahwal VK, Dubey BK, Bhoumick M. Preformulation study of Levofloxacin. Int J Adv Pharm. 2012;1:1–8.

    Google Scholar 

  40. Gevariya HB, Gami S, Patel N. Formulation and characterization of levofloxacin-loaded biodegradable nanoparticles. Asian J Pharm. 2011;5:114–9.

    Article  Google Scholar 

  41. Kannan S, Lemos IAF, Rocha JHG, et al. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratio. J Solid State Chem. 2005;178:3190–6.

    Article  Google Scholar 

  42. Kannan S, Ventura JM, Ferreira JMF. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: an X-ray diffraction study. Ceram Int. 2007;33(4):637–41.

    Article  Google Scholar 

  43. Kannan S, Goetz-Neunhoeffer F, Neubauer J, et al. Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and β-tricalcium phosphate) mixtures. J Biomed Mater Res Part B. 2009;90B(1):404–11.

    Article  Google Scholar 

  44. Kannan S, Pina S, Ferreira JMF. Formation of strontium-stabilized β-tricalcium phosphate from calcium-deficient apatite. J Am Ceram Soc. 2006;89(10):3277–80.

    Article  Google Scholar 

  45. Kannan S, Goetz-Neunhoeffer F, Neubauer J, et al. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Acta Biomater. 2010;6(2):571–6.

    Article  Google Scholar 

  46. Gibson IR, Rehman I, Best SM, et al. Characterization of the Transformation from Calcium-Deficient Apatite to β-Tricalcium Phosphate. J Mater Sci Mater Med. 2000;11(12):799–804.

    Article  Google Scholar 

  47. Kim T-W, Park YM, Kim D-H, et al. In situ formation of biphasic calcium phosphates and their biological performance in vivo. Ceram Int. 2012;38(3):1965–74.

    Article  Google Scholar 

  48. Queiroz AC, Santos JD, Monteiro FJ, et al. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials. 2001;22:1393–400.

    Article  Google Scholar 

  49. Palazzo B, Iafisco M, Laforgia M, et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17:2180–8.

    Article  Google Scholar 

  50. Hasegawa M, Sudo A, Komlev VS, et al. High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution. J Biomed Mater Res Part B. 2004;70:332–9.

    Article  Google Scholar 

  51. Seshima H, Yoshinari M, Takemoto S, et al. Control of bisphosphonate release using hydroxyapatite granules. J Biomed Mater Res Part B. 2006;78:215–21.

    Article  Google Scholar 

  52. Shinto Y, Uchida A, Korkusuz F, et al. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Joint Surg B. 1992;74:600–4.

    Google Scholar 

  53. Sasikumar S. Effect of particle size of calcium phosphate based bioceramic drug deliver y carrier on the release kinetics of ciprofloxacin hydrochloride: an in vitro study. Front Mater Sci. 2013;7(3):261–8.

    Article  Google Scholar 

  54. Ferreira JMF, Olhero SM, Kaushal A. Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate? J Eur Ceram Soc. 2013;33:2509–17.

    Article  Google Scholar 

  55. Olhero SM, Kaushal A, Ferreira JMF. Fabrication of barium strontium titanate (Ba0.6Sr0.4TiO3) 3D microcomponents from aqueous suspensions. J Am Ceram Soc. 2014;97(3):725–32.

    Article  Google Scholar 

  56. Kaushal A, Olhero SM, Sing B, et al. Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceram Inter. 2014;40(7):10593–600.

    Article  Google Scholar 

  57. Matos AC, Marques CF, Pinto RV, Ribeiro IAC, Gonçalves LM, Vaz MA, Ferreira JMF, Almeida AJ, Bettencourt AF. Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. Int J Pharm. 2015;490:200–8.

    Article  Google Scholar 

  58. Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27:2450–67.

    Article  Google Scholar 

  59. ISO. International Standard ISO Specification 10993(5): Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. 3rd ed. Geneva: ISO; 2009.

    Google Scholar 

Download references

Acknowledgments

The authors thank CICECO and CBC PEst-OE/SAU/UI0482/2014, Research Units of the University of Aveiro, iMed.ULisboa, Research Unit of Faculty of Pharmacy, University of Lisbon (strategic project PEst-OE/SAU/UI4013/2014) for financial support, and also FCT for the fellowship Grant to Catarina Marques (SFRH/BD/78355/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina F. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, C.F., Matos, A.C., Ribeiro, I.A.C. et al. Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders. J Mater Sci: Mater Med 27, 123 (2016). https://doi.org/10.1007/s10856-016-5733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5733-2

Keywords

Navigation