Skip to main content

Production and Characterization of Antibiotic Containing Nano Calcium Phosphates

  • Chapter
  • First Online:
Nanotechnology Applications in Health and Environmental Sciences

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 501 Accesses

Abstract

Implant-related infections constitute a large percentage of hospital-acquired infections and may result in implant failure and bone degradation. Such occurrences stem from either the colonization of bacteria around the host tissue or the formation of biofilm on the implant surface. In clinical treatment, antibiotics may be administered systemically or locally. The latter is expected to be much more effective due to the local intensified antibacterial activity with minimal systemic toxicity. In order to achieve such an outcome, suitable carriers need to be developed. Among many biodegradable carriers, calcium phosphates have attracted specific interest owing to their osteoconductive and bioactive characteristics. This chapter aims to bring together the results reported in the current relevant literature about the applications of calcium phosphates used for local delivery of a variety of antibiotics. Specifically, the influence of the delivery system properties both on drug-releasing profile and antibacterial activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 7:4053–4063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51(Suppl S1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Bakan F (2017) Gene delivery by hydroxyapatite and calcium phosphate nanoparticles: a review of novel and recent applications. In: Thirumalai J (ed) Hydroxyapatite—advances in composite nanomaterials, biomedical applications and its technological facets. IntechOpen, Rijeka, pp 157–176

    Google Scholar 

  • Bakan F (2019) A systematic study of the effect of pH on the initialization of CDHA to β-TCP nanoparticles. Materials 12(3):354–367

    Article  CAS  PubMed Central  Google Scholar 

  • Bakan F, Lacin O, Sarac H (2013) A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302

    Article  CAS  Google Scholar 

  • Bakan F, Kara G, Cokol Cakmak M, Cokol M, Denkbas EB (2017) Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery. Colloids Surf B Biointerfaces 158:175–181

    Article  CAS  PubMed  Google Scholar 

  • Berbari EF, Steckelberg JM, Osmon DR (2009) Osteomyelitis. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 7th edn. Saunders Elsevier, Philadelphia, pp 1457–1467

    Google Scholar 

  • Bhattacharya R, Kundu B, Nandi SK, Basu D (2013) Systematic approach to treat chronic osteomyelitis through localized drug delivery system: bench to bed side. Mater Sci Eng C 33:3986–3993

    Article  CAS  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121(136):1–58

    Article  CAS  Google Scholar 

  • Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Stromme M (2009) Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med 20:1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Chai F, Hornez JC, Blanchemain N, Neut C, Descamps M, Hildebrandt HF (2007) Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol Eng 24(5):510–514

    Article  CAS  PubMed  Google Scholar 

  • Chang CY (2017) Surface sensing for biofilm formation in Pseudomonas aeruginosa. Front Microbiol 8:2671–2678

    Article  PubMed  Google Scholar 

  • Chang H, Perrie Y, Coombes A (2006) Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone. J Control Release 110(2):414–421

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Marks LR, Pettigrew MM, Hakansson AP (2014) Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 4(194):1–16

    Google Scholar 

  • Cokol-Cakmak M, Bakan F, Cetiner S, Cokol M (2018) Diagonal method to measure synergy among any number of drugs. J Vis Exp (136):e57713

    Google Scholar 

  • Dabiri SM, Lagazzo A, Aliakbarian B, Mehrjoo M, Finocchio E, Pastorino L (2019) Fabrication of alginate modified brushite cement impregnated with antibiotic: mechanical, thermal, and biological characterizations. J Biomed Mater Res 107A:2063–2075

    Article  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  • Dorozhkin S (2010) Amorphous calcium (ortho)phosphates. Acta Biomater 6(12):4457–4475

    Article  CAS  PubMed  Google Scholar 

  • Dorozhkin S (2016) Calcium orthophosphates (CaPO4): occurrence and properties. Prog Biomater 5(1):9–70

    Article  CAS  PubMed  Google Scholar 

  • Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81(4):994–1004

    Article  CAS  PubMed  Google Scholar 

  • Foster T (1996) Staphylococcus. In: Barron’s Medical Microbiology, 4th edn. University of Texas Medical Branch. ISBN: 0-9631172-1-1

    Google Scholar 

  • Geuli O, Metoki N, Zada T, Reches M, Eliaz N, Mandler D (2017) Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J Mater Chem B 5:7819–7830

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Wu V, Pernal S, Uskovic V (2016) Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications. App Mater Interfaces 8:7691–7708

    Article  CAS  Google Scholar 

  • Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence 4(2):185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo YJ, Long T, Chen W, Ning CQ, Zhu ZA, Guo YP (2013) Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater Sci Eng C 33:3583–3591

    Article  CAS  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention e a journey to break the wall: a review. Arch Microbiol 198(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res (437):91–96

    Google Scholar 

  • Heimann RB (2017) Osseoconductive and corrosion-inhibiting plasma-sprayed calcium phosphate coatings for metallic medical implants. Metals 7(11):468–487

    Article  CAS  Google Scholar 

  • Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39(5):649–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Chung TW (2008) Microencapsulation of gentamicin in biodegradable PLA and/or PLA/PEG copolymer. J Microencapsul 18(4):457–465

    Google Scholar 

  • Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. PNAS 109(50):20632–20636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    Article  PubMed  Google Scholar 

  • Jiang PJ, Patel S, Gbureck U, Caley R, Grover LM (2010) Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride. J Biomed Mater Res B 93(1):58–61

    Google Scholar 

  • Jiang J, Li Y, Fang T, Zhou J, Li X, Wang Y, Dong J (2012) Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res 61(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, Eiff C (2005) Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials 26:5251–5258

    Article  CAS  PubMed  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya M, Simsek Kaya G, Gursan N, Girecci E, Dayi E, Gundogdu B (2012) Local treatment of chronic osteomyelitis with surgical debridement and tigecycline-impregnated calcium hydroxyapatite: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol 11(3):340–347

    Article  Google Scholar 

  • Khatoon Z, McTiernan CD, Suuronen E, Mah T, Alarcon E (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12):e01067

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinik H, Karaduman M (2008) Cierny-Mader Type III chronic osteomyelitis: the results of patients treated with debridement, irrigation, vancomycin beads and systemic antibiotics. Int Orthop 32(4):551–558

    Article  PubMed  Google Scholar 

  • Koch N, Islam NF, Sonowal S, Prasad R, Sarma H (2021) Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Current Research in Microbial Sciences https://doi.org/10.1016/j.crmicr.2021.100027

  • Kremers HM, Nwojo ME, Ransom JE, Wood-Went CM, Melton LJ, Huddleston PM (2015) Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg 97:837–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27(8):1659–1676

    Article  CAS  PubMed  Google Scholar 

  • Lee Ventola C (2015) The antibiotic resistance crisis. Part 1: causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  • Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379

    Article  CAS  PubMed  Google Scholar 

  • Lilja M, Sörensen JH, Brohede U, Astrand M, Procter P, Arnoldi J, Steckel H, Stromme M (2013) Drug loading and release of tobramycin from hydroxyapatite coated fixation pins. J Mater Sci Mater Med 24:2265–2274

    Article  CAS  PubMed  Google Scholar 

  • Mader JT, Cripps MW, Calhoun JH (1999) Adult posttraumatic osteomyelitis of the tibia. Clin Orthop Relat Res 360:14–21

    Article  Google Scholar 

  • Mahhumathi K, Rubaiya Y, Doble M, Venkateswari R, Sampath Kumar TS (2018) Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Drug Deliv Transl Rev 8(5):1066–1077

    Article  CAS  Google Scholar 

  • Marques CF, Lemos A, Viera SI, da Cruz Silva OAB, Bettencourt A, Ferreira JMF (2016) Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ceram Int 42:2706–2716

    Article  CAS  Google Scholar 

  • Medvecky L, Sopcak T, Girman V, Briancin J (2013) Amorphous calcium phosphates synthesized by precipitation from calcium D-gluconate solutions. Colloids Surf A Physicochem Eng Asp 417:191–200

    Article  CAS  Google Scholar 

  • Mir M, Siddiqi SA, Hussain T, Chaudry AA, Rehman IU, Khan AS, Abbas G (2014) Synthesis and characterization of calcium-deficient apatite granules for drug eluting bone graft applications. Ceram Int 40:10719–10725

    Article  CAS  Google Scholar 

  • Nagarathinama S, Sujathaa V, Madhumathic K, Mahalaxmia S, Vanajassunb P, Kumar TS (2019) Effect of triple antibiotic loaded apatitic nanocarriers on Enterococcus faecalis biofilm-an in vitro study. J Drug Del Sci Technol 51:499–505

    Article  CAS  Google Scholar 

  • Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D (2009) Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Eng C 29:2478–2485

    Article  CAS  Google Scholar 

  • Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N (2005) Comparison of hydroxyapatite and beta-tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res Part B Appl Biomater 72:94–101

    Article  CAS  Google Scholar 

  • Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho L, Correia MTS (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98(2):111–117

    Article  CAS  PubMed  Google Scholar 

  • Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4(2):1–27

    Article  CAS  Google Scholar 

  • Prasad R, Siddhardha B, Dyavaiah M (2020) Nanostructures for antimicrobial and antibiofilm applications. Springer International Publishing, Basel. (ISBN 978-3-030-40336-2) https://www.springer.com/gp/book/9783030403362

    Book  Google Scholar 

  • Queiroz AC, Santos JD, Monteiro FJ (2005) Porous HA scaffolds for drug releasing. Key Eng Mater 284–286:407–410

    Article  Google Scholar 

  • Rimondini L, Cochis A, Varoni E, Azzimonti B, Carrassi A (2016) Biofilm formation on implants and prosthetic dental materials. Handbook of Bioceramics and Biocomposites, p 991–1027

    Google Scholar 

  • Roeder B, Van Gils CC, Maling S (2000) Antibiotic beads in the treatment of diabetic pedal osteomyelitis. J Foot Ankle Surg 39(2):124–130

    Article  CAS  PubMed  Google Scholar 

  • Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Clin Opin Pharmacol 18:56–60

    Article  CAS  Google Scholar 

  • Selvakumar M, Kumar PS, Das B, Dhara S, Chattopadhyay S (2017) Structurally tuned antimicrobial mesoporous hydroxyapatite nanorods by cyclic oligosaccharides regulation to release a drug for osteomyelitis. Cryst Growth Des 17:433–445

    Article  CAS  Google Scholar 

  • Shahrezaee M, Raz M, Shishehbor S, Moztarzadeh F, Baghbani F, Sadeghi A, Bajelani K, Tondnevis F (2018) Synthesis of magnesium doped amorphous calcium phosphate as a bioceramic for biomedical application: in vitro study. Silicon 10:1171–1179

    Article  CAS  Google Scholar 

  • Shiels SM, Tennent DJ, Akers KS, Wenke JC (2017) Determining potential of PMMA as a depot for rifampin to treat recalcitrant orthopedic infections. Injury 48:2095–2100

    Article  PubMed  Google Scholar 

  • Smith JK, Bumgardner JD, Courtney HS, Smeltzer MS, Haggard WO (2010) Antibiotic-loaded chitosan film for infection prevention: a preliminary in vitro characterization. J Biomed Mater Res B 94(1):203–211

    Google Scholar 

  • Son Y, Lee H, Chung T, Oh K (2019) Setting behavior and drug release from brushite bone cement prepared with granulated hydroxyapatite and β-tricalcium phosphate. J Korean Ceram Soc 56(1):56–64

    Article  CAS  Google Scholar 

  • Stigter M, Bezemer J, de Groot K, Layrolle P (2004) Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 99(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Sundblom J, Gallinetti S, Birgersson U, Engqvist H, Kihlstrom L (2019) Gentamicin loading of calcium phosphate implants: implications for cranioplasty. Acta Neurochir 161:1255–1259

    Article  PubMed  Google Scholar 

  • Szurkowska K, Laskus A, Kolmas J (2017) Hydroxyapatite-based materials for potential use in bone tissue infections. In: Thirumalai J (ed) Hydroxyapatite—advances in composite nanomaterials, biomedical applications and its technological facets. IntechOpen, Rijeka

    Google Scholar 

  • Thompson K, Petkov S, Zeiter S, Sprecher CM, Richards G, Moriarty TF, Eijer H (2019) Intraoperative loading of calcium phosphate-coated implants with gentamicin prevents experimental Staphylococcus aureus infection in vivo. PLoS One 14(2):e0210402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trombetta RP, Ninomiya MJ, El-Atawneh IM, Knapp EK, de Mesy Bentley KL, Dunman PM, Schwarz EM, Kates SL, Awad HA (2019) Calcium phosphate spacers for the local delivery of sitafloxacin and rifampin to treat orthopedic infections: efficacy and proof of concept in a mouse model of single-stage revision of device-associated osteomyelitis. Pharmaceutics 11(2):94–115

    Article  CAS  PubMed Central  Google Scholar 

  • Tsourvakas S (2012) Local antibiotic therapy in the treatment of bone and soft tissue infections. In: Danilla S (ed) Selected topics in plastic reconstructive surgery, IntechOpen, Rijeka

    Google Scholar 

  • Turkez H, Yousef MI, Sonmez E, Togar B, Bakan F, Sozio P, Stefano AD (2014) Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J App Toxicol 34(4):373–379

    Article  CAS  Google Scholar 

  • Uskokovic V, Desai TA (2014) Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Mater Sci Eng C 37:210–222

    Article  CAS  Google Scholar 

  • Wright GD (2014) Something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60(3):147–154

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Zhou K, Li Z (2014) Preparation, characterization and in vitro gentamicin release of porous HA microspheres. Mater Sci Eng C 45:306–312

    Article  CAS  Google Scholar 

  • Zaborowska M, Tillander J, Branemark R, Hagberg L, Thomsen P, Trobos M (2017) Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopedic implants. J Biomed Mater Res B 105(8):2630–2640

    Article  CAS  Google Scholar 

  • Zheng Y, He L, Asiamah TK, Otto M (2018) Colonization of medical devices by staphylococci. J Appl Environ Microbiol 20(9):3141–3153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feray Bakan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakan, F. (2021). Production and Characterization of Antibiotic Containing Nano Calcium Phosphates. In: Saglam, N., Korkusuz, F., Prasad, R. (eds) Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64410-9_16

Download citation

Publish with us

Policies and ethics