Skip to main content

Advertisement

Log in

Fabrication of gelatin–strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study fabricated homogeneous gelatin–strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze–drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200–400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin–strontium-substituted calcium phosphate for applications in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–89. doi:10.1089/107632701753337645.

    Article  Google Scholar 

  2. Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48(2):142–8.

    Google Scholar 

  3. Sasaki N, Sudoh Y. X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int. 1997;60(4):361–7.

    Article  Google Scholar 

  4. Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, et al. Bio-artificial skin composed of gelatin and (1  – >3), (1 – >6)-beta-glucan. Biomaterials. 2003;24(14):2503–11.

    Article  Google Scholar 

  5. Kuijpers AJ, van Wachem PB, van Luyn MJ, Plantinga JA, Engbers GH, Krijgsveld J, et al. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J Biomed Mater Res. 2000;51(1):136–45.

    Article  Google Scholar 

  6. Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res Part A. 2007;83(4):1039–46. doi:10.1002/jbm.a.31431.

    Article  Google Scholar 

  7. Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58(5):570–92.

    Article  Google Scholar 

  8. Song J, Xu J, Filion T, Saiz E, Tomsia AP, Lian JB, et al. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J Biomed Mater Res Part A. 2009;89(4):1098–107. doi:10.1002/jbm.a.32110.

    Article  Google Scholar 

  9. Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26(25):5221–30. doi:10.1016/j.biomaterials.2005.01.047.

    Article  Google Scholar 

  10. Kim HW, Knowles JC, Kim HE. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B Appl Biomater. 2005;74(2):686–98. doi:10.1002/jbm.b.30236.

    Article  Google Scholar 

  11. Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H. The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Med Mater Eng. 1991;1(1):11–7.

    Google Scholar 

  12. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, et al. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci. 1998;9(3):129–34.

    Google Scholar 

  13. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, et al. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res Part A. 2006;79(3):723–30. doi:10.1002/jbm.a.30806.

    Article  Google Scholar 

  14. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci. 2008;19(1):239–47. doi:10.1007/s10856-006-0032-y.

    Google Scholar 

  15. Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone. 1997;20(1):47–54.

    Article  Google Scholar 

  16. Morohashi T, Sano T, Yamada S. Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol. 1994;64(3):155–62.

    Article  Google Scholar 

  17. Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, et al. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7(2):800–8. doi:10.1016/j.actbio.2010.08.031.

    Article  Google Scholar 

  18. Coulombe J, Faure H, Robin B, Ruat M. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun. 2004;323(4):1184–90. doi:10.1016/j.bbrc.2004.08.209.

    Article  Google Scholar 

  19. Wong CT, Lu WW, Chan WK, Cheung KM, Luk KD, Lu DS, et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. J Biomed Mater Res Part A. 2004;68(3):513–21. doi:10.1002/jbm.a.20089.

    Article  Google Scholar 

  20. Ni GX, Lu WW, Chiu KY, Li ZY, Fong DY, Luk KD. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study. J Biomed Mater Res B Appl Biomater. 2006;77(2):409–15. doi:10.1002/jbm.b.30417.

    Article  Google Scholar 

  21. Reginster JY, Lecart MP, Deroisy R, Lousberg C. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Expert Opin Investig Drugs. 2004;13(7):857–64. doi:10.1517/13543784.13.7.857.

    Article  Google Scholar 

  22. Briot K, Roux C. Strontium ranelate: state of the art. Women’s Health. 2005;1(1):15–21. doi:10.2217/17455057.1.1.15.

    Article  Google Scholar 

  23. Rodriguez J, Escudero ND, Mandalunis PM. Effect of strontium ranelate on bone remodeling. Acta odontologica latinoamericana. 2012;25(2):208–13.

    Google Scholar 

  24. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981–91. doi:10.1002/stem.646.

    Article  Google Scholar 

  25. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci. 2007;53(1–2):25–35.

    Google Scholar 

  26. Davidenko N, Gibb T, Schuster C, Best SM, Campbell JJ, Watson CJ, et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 2012;8(2):667–76. doi:10.1016/j.actbio.2011.09.033.

    Article  Google Scholar 

  27. Madaghiele M, Sannino A, Yannas IV, Spector M. Collagen-based matrices with axially oriented pores. J Biomed Mater Res Part A. 2008;85(3):757–67. doi:10.1002/jbm.a.31517.

    Article  Google Scholar 

  28. Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci. 2009;20(6):1273–80. doi:10.1007/s10856-009-3695-3.

    Google Scholar 

  29. Nikodem A, Scigala K. Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue. Acta Bioeng Biomech Wroclaw Univ Technol. 2010;12(3):85–93.

    Google Scholar 

  30. Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone. 2008;42(6):1131–6. doi:10.1016/j.bone.2008.02.010.

    Article  Google Scholar 

  31. Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press; 1989.

    Google Scholar 

  32. Fan H, Ikoma T, Tanaka J, Zhang X. Surface structural biomimetics and the osteoinduction of calcium phosphate biomaterials. J Nanosci Nanotechnol. 2007;7(3):808–13.

    Article  Google Scholar 

  33. Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys. 2004;83(2–3):204–8. doi:10.1016/j.mathchemphys.2003.08.027.

    Article  Google Scholar 

  34. Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res Part A. 2009;91(2):447–53. doi:10.1002/jbm.a.32216.

    Article  Google Scholar 

  35. Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, et al. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules. 2011;12(4):1250–8. doi:10.1021/bm1015464.

    Article  Google Scholar 

  36. Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, et al. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater. 2007;80(1):166–73. doi:10.1002/jbm.b.30581.

    Article  Google Scholar 

  37. Yu H, Matthew HW, Wooley PH, Yang SY. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites. J Biomed Mater Res B Appl Biomater. 2008;86(2):541–7. doi:10.1002/jbm.b.31054.

    Article  Google Scholar 

  38. Guarino V, Causa F, Ambrosio L. Porosity and mechanical properties relationship in PCL porous scaffolds. J Appl Biomater Biomech. 2007;5(3):149–57.

    Google Scholar 

  39. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007;74(3):438–47. doi:10.1016/j.bcp.2007.04.020.

    Article  Google Scholar 

  40. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res Part A. 2006;79(4):804–14. doi:10.1002/jbm.a.30815.

    Article  Google Scholar 

  41. Boanini E, Torricelli P, Fini M, Bigi A. Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci. 2011;22(9):2079–88. doi:10.1007/s10856-011-4379-3.

    Google Scholar 

  42. Aina V, Bergandi L, Lusvardi G, Malavasi G, Imrie FE, Gibson IR, et al. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Mater Sci Eng C. 2013;33(3):1132–42. doi:10.1016/j.msec.2012.12.005.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant NSC 100-2221-E-006-263 from the National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzer-Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YC., Lin, WY., Yang, CY. et al. Fabrication of gelatin–strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering. J Mater Sci: Mater Med 26, 152 (2015). https://doi.org/10.1007/s10856-015-5490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5490-7

Keywords

Navigation