Skip to main content
Log in

Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Sustained delivery of growth factors has emerged as an essential requirement for bone tissue engineering applications for the treatment of various kinds of bone defects. Chitosan (CH) has attracted particular attention for drug delivery and bone tissue engineering because of its favorable biocompatibility and biodegradability. In this study, a composite microsphere system containing CH and nanohydroxyapatite (nHA)-alendronate (AL) particles was fabricated by employing both emulsification and cross-linking strategies. The microspheres were characterized for their surface morphology, composition, size distribution, drug loading efficiency and release properties. The results showed that loading efficiency and sustained release of hydrophilic AL were significantly improved, which is ideal for locally sustained release in the bone microenvironment. In vitro osteogenic studies showed that the microspheres could enhance the osteogenic activity of rabbit adipose-derived stem cells. In conclusion, the CH/nHA-AL composite microspheres exhibit promising properties as a candidate for local treatment for bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kenley RA, Yim K, Abrams J, Ron E, Turek T, Marden LJ, et al. Biotechnology and bone graft substitutes. Pharm Res. 1993;10(10):1393–401.

    Article  Google Scholar 

  2. Bostrom MP, Saleh KJ, Einhorn TA. Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthoped Clin North Am. 1999;30(4):647–58.

    Article  Google Scholar 

  3. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am Vol. 2002;84(A(6)):1032–44.

    Google Scholar 

  4. Nauth A, Ristevski B, Li R, Schemitsch EH. Growth factors and bone regeneration: how much bone can we expect? Injury. 2011;42(6):574–9.

    Article  Google Scholar 

  5. Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev. 2005;16(3):329–45.

    Article  Google Scholar 

  6. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–309.

    Article  Google Scholar 

  7. Malafaya PB, Silva GA, Baran ET, Reis RL. Drug delivery therapies II. Strategies for delivering bone regenerating factors. Curr Opin Solid State Mater Sci. 2002;6(4):297–312.

    Article  Google Scholar 

  8. Reves BT, Bumgardner JD, Haggard WO. Fabrication of crosslinked carboxymethylchitosan microspheres and their incorporation into composite scaffolds for enhanced bone regeneration. J Biomed Mater Res B. 2013;101(4):630–9.

    Article  Google Scholar 

  9. Low SA, Kopecek J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.

    Article  Google Scholar 

  10. Han B, Wang HT, Liu HY, Hong H, Lv W, Shang ZH. Preparation of pingyangmycin PLGA microspheres and related in vitro/in vivo studies. Int J Pharm. 2010;398(1–2):130–6.

    Article  Google Scholar 

  11. Hernán Pérez de la Ossa D, Ligresti A, Gil-Alegre ME, Aberturas MR, Molpeceres J, Di Marzo V. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: development, characterization and in vitro evaluation of their antitumoral efficacy. J Control Release. 2012;161(3):927–32.

    Article  Google Scholar 

  12. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36(9):1254–76.

    Article  Google Scholar 

  13. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014.

    Article  Google Scholar 

  14. Patil SB, Sawant KK. Chitosan microspheres as a delivery system for nasal insufflation. Colloids Surf B. 2011;84(2):384–9.

    Article  Google Scholar 

  15. Jameela SR, Kumary TV, Lal AV, Jayakrishnan A. Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. J Control Release. 1998;52(1–2):17–24.

    Article  Google Scholar 

  16. Jameela SR, Jayakrishnan A. Glutaraldehyde cross-linked chitosan microspheres as a long-acting biodegradable drug-delivery vehicle—studies on the in-vitro release of mitoxantrone and in-vivo degradation of microspheres in rat muscle. Biomaterials. 1995;16(10):769–75.

    Article  Google Scholar 

  17. Niu XF, Feng QL, Wang MB, Guo XD, Zheng QX. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134(2):111–7.

    Article  Google Scholar 

  18. Wang J, Wang BA, Schwendeman SP. Characterization of the initial burst release of a model peptide from poly(d, l-lactide-co-glycolide) microspheres. J Control Release. 2002;82(2–3):289–307.

    Article  Google Scholar 

  19. Gentile P, Mattioli-Belmonte M, Chiono V, Ferretti C, Baino F, Tonda-Turo C, et al. Bioactive glass/polymer composite scaffolds mimicking bone tissue. J Biomed Mater Res. 2012;100(10):2654–67.

    Article  Google Scholar 

  20. Liu Q, de Wijn JR, van Blitterswijk CA. A study on the grafting reaction of isocyanates with hydroxyapatite particles. J Biomed Mater Res. 1998;40(3):358–64.

    Article  Google Scholar 

  21. Miyazaki T, Ishikawa K, Shirosaki Y, Ohtsuki C. Organic-inorganic composites designed for biomedical applications. Biol pharm bull. 2013;36(11):1670–5.

    Article  Google Scholar 

  22. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials. 1998;19(7–9):739–44.

    Article  Google Scholar 

  23. Ding CC, Teng SH, Pan H. In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application. Mater Lett. 2012;79:72–4.

    Article  Google Scholar 

  24. Boanini E, Gazzano M, Rubini K, Bigi A. Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure. Adv Mater. 2007;19(18):2499.

    Article  Google Scholar 

  25. Shi X, Wang Y, Varshney RR, Ren L, Zhang F, Wang DA. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite. Biomaterials. 2009;30(23–24):3996–4005.

    Article  Google Scholar 

  26. von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26(34):6941–9.

    Article  Google Scholar 

  27. Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials. 2008;29(7):790–6.

    Article  Google Scholar 

  28. Nishikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugal N, et al. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone. 1996;18(1):9–14.

    Article  Google Scholar 

  29. Duque G, Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res. 2007;22(10):1603–11.

    Article  Google Scholar 

  30. Wang CZ, Chen SM, Chen CH, Wang CK, Wang GJ, Chang JK, et al. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials. 2010;31(33):8674–83.

    Article  Google Scholar 

  31. Giger EV, Castagner B, Leroux JC. Biomedical applications of bisphosphonates. J Control Release. 2013;167(2):175–88.

    Article  Google Scholar 

  32. Shi X, Wang Y, Ren L, Gong Y, Wang DA. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res. 2009;26(2):422–30.

    Article  Google Scholar 

  33. Chen J, Luo Y, Hong L, Ling Y, Pang J, Fang Y, et al. Synthesis, characterization and osteoconductivity properties of bone fillers based on alendronate-loaded poly(epsilon-caprolactone)/hydroxyapatite microspheres. J Mater Sci Mater Med. 2011;22(3):547–55.

    Article  Google Scholar 

  34. Sterodimas A, de Faria J, Nicaretta B, Pitanguy I. Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg. 2010;63(11):1886–92.

    Article  Google Scholar 

  35. Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells. 2014;6(1):65–8.

    Article  Google Scholar 

  36. Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells. 2014;6(2):144–52.

    Article  Google Scholar 

  37. Mirsaidi A, Genelin K, Vetsch JR, Stanger S, Theiss F, Lindtner RA, et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials. 2014;35(26):7326–35.

    Article  Google Scholar 

  38. Yun YP, Kim SJ, Lim YM, Park K, Kim HJ, Jeong SI, et al. The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. J Biomed Nanotechnol. 2014;10(6):1080–90.

    Article  Google Scholar 

  39. Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134(2):111–7.

    Article  Google Scholar 

  40. Long ML, Huang HL, Yan F, Ji SD. Determination of Alendronate Sodium in Compound Alendronate Sodium Tablets by the Molybdenum Blue Colorimetry. Pharm J Chin PLA. 2006;22(6):434–6.

    Google Scholar 

  41. Qian YF, Zhang KH, Chen F, Ke QF, Mo XM. Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed. 2011;22(8):1099–113.

    Article  Google Scholar 

  42. Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul. 1997;14(6):689–711.

    Article  Google Scholar 

  43. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24(11):979–93.

    Article  Google Scholar 

  44. Wang LY, Gu YH, Zhou QZ, Ma GH, Wan YH, Su ZG. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B. 2006;50(2):126–35.

    Article  Google Scholar 

  45. Liu X, Chen Y, Huang Q, He W, Feng Q, Yu B. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohydr Polym. 2014;110:62–9.

    Article  Google Scholar 

  46. Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A. 2009;88(3):569–80.

    Article  Google Scholar 

  47. Zhu A, Lu Y, Zhou Y, Dai S. Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner. J Mater Sci Mater Med. 2010;21(12):3095–101.

    Article  Google Scholar 

  48. Bagheri-Khoulenjani S, Mirzadeh H, Etrati-Khosroshahi M, Shokrgozar MA. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering. J Biomed Mater Res A. 2013;101(6):1758–67.

    Article  Google Scholar 

  49. Dini E, Alexandridou S, Kiparissides C. Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications. J Microencapsul. 2003;20(3):375–85.

    Article  Google Scholar 

  50. Samdancioglu S, Calis S, Sumnu M, Atilla Hincal A. Formulation and in vitro evaluation of bisphosphonate loaded microspheres for implantation in osteolysis. Drug Dev Ind Pharm. 2006;32(4):473–81.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Scientific Research Funding Program of Central South University and Changsha Municipal Sci-Tech Project of China (K1101025-31). The authors would like to thank Dr. Yibing Qyang, Dr. Zhengxin Jiang and Ms. Carol Suh for editing. The authors also thank Wenhu Zhou and Yan Tang for technical assistance and Zili Wang for providing the rabbit adipose-derived stem cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyue Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, Y., Liu, G. et al. Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate. J Mater Sci: Mater Med 25, 2649–2658 (2014). https://doi.org/10.1007/s10856-014-5289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5289-y

Keywords

Navigation