Skip to main content
Log in

Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Liver tissue engineering using polymeric nanofibrous scaffold and stem cells holds great promises for treating end-stage liver failures. The aim of this study was to evaluate hepatic trans-differentiation potential of human mesenchymal stem cells (hMSCs) on a biomagnetic electrospun nanofibrous scaffold fabricated from a blend of poly-l-lactide (PLLA), collagen and fibrin-rich blood clot, under the influence of a low frequency magnetic field. The scaffold was characterized for surface properties, biochemical and biomechanical parameters and bio-magnetic behaviour. Cell proliferation assay revealed that the scaffold was suitable for hMSCs adhesion and proliferation. Hepatic trans-differentiation potential of hMSCs was augmented on nanofibrous scaffold in magnetic field exposure group compared to control groups, as evident by strong expression of hepatocyte specific markers, albumin release, urea synthesis and presence of an inducible cytochrome P450 system. Our results conclude that biomagnetic scaffold of PLLA/collagen/blood clot augments hepatic trans-differentiation of hMSCs under magnetic field influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ. 2003;327(7407):143–7.

    Article  Google Scholar 

  2. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Bagheri M, Bashtar M, Ghanaati H, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med. 2007;10(4):459–66.

    Google Scholar 

  3. Kharaziha P, Hellstrom PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur J Gastroenterol Hepatol. 2009;21(10):1199–205.

    Article  Google Scholar 

  4. Bishi DK, Mathapati S, Cherian KM, Guhathakurta S, Verma RS. In vitro hepatic trans-differentiation of human mesenchymal stem cells using sera from congestive/ischemic liver during cardiac failure. PLoS One. 2014;18(3):e92397.

    Article  Google Scholar 

  5. Lee KD, Kuo TKC, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40(6):1275–84.

    Article  Google Scholar 

  6. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284(5417):1168–70.

    Article  Google Scholar 

  7. Han D, Gouma PI. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine. 2006;2(1):37–41.

    Article  Google Scholar 

  8. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603–21.

    Article  Google Scholar 

  9. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.

    Article  Google Scholar 

  10. Simamora P, Chern W. Poly-l-lactic acid: an overview. J Drugs Dermatol. 2006;5(5):436–40.

    Google Scholar 

  11. Sakai R, John B, Okamoto M, Seppälä JV, Vaithilingam J, Hussein H, et al. Fabrication of polylactide-based biodegradable thermoset scaffolds for tissue engineering applications. Macromol Mater Eng. 2013;298(1):45–52.

    Article  Google Scholar 

  12. Huang H, Hanada S, Kojima N, Sakai Y. Enhanced functional maturation of fetal porcine hepatocytes in three-dimensional poly-l-lactic acid scaffolds: a culture condition suitable for engineered liver tissues in large-scale animal studies. Cell Transplant. 2006;15(8–9):799–809.

    Article  Google Scholar 

  13. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005;203(3):465–70.

    Article  Google Scholar 

  14. Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev. 2008;14(2):199–215.

    Article  Google Scholar 

  15. Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24(14):2497–502.

    Article  Google Scholar 

  16. Mol A, van Lieshout MI, Dam-deVeen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26(16):3113–21.

    Article  Google Scholar 

  17. McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D, et al. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater. 2007;2(4):257–62.

    Article  Google Scholar 

  18. Perumcherry SR, Chennazhi KP, Nair SV, Menon D, Afeesh R. A novel method for the fabrication of fibrin-based electrospun nanofibrous scaffold for tissue-engineering applications. Tissue Eng C Methods. 2011;17(11):1121–30.

    Article  Google Scholar 

  19. Bruns H, Kneser U, Holzhuter S, Roth B, Kluth J, Kaufmann PM, et al. Injectable liver: a novel approach using fibrin gel as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng. 2005;11(11–12):1718–26.

    Article  Google Scholar 

  20. Furie B, Furie BC. The molecular basis of blood coagulation. Cell. 1988;53(4):505–18.

    Article  Google Scholar 

  21. Zhao H, Ma L, Zhou J, Mao Z, Gao C, Shen J. Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mater. 2008;3(1):015001.

    Article  Google Scholar 

  22. Repacholi MH, Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics. 1999;20(3):133–60.

    Article  Google Scholar 

  23. Adair RK. Static and low-frequency magnetic field effects: health risks and therapies. Rep Prog Phys. 2000;63(3):415.

    Article  Google Scholar 

  24. Nakamae T, Adachi N, Kobayashi T, Nagata Y, Nakasa T, Tanaka N, et al. The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells. Sports Med Arthrosc Rehabil Ther Technol. 2010;2(1):5.

    Article  Google Scholar 

  25. Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med. 2010;29(4):165–76.

    Article  Google Scholar 

  26. Marincas C, Butnaru A, Soritau O, Tomuleasa C, Ciupa R, Mihu C, editors. Effects of the static magnetic field on stem cells in the vicinity of a 1 Tesla MRI system. In: E-Health and Bioengineering Conference (EHB); 2011. P. 1–4.

  27. Song MY, Yu JZ, Zhao DM, Wei S, Liu Y, Hu YM, et al. The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Cell Biochem Biophys. 2014;69(1):47–54.

    Article  Google Scholar 

  28. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA. 1936;22(4):210–6.

    Article  Google Scholar 

  29. Cerdonio M, Congiu-Castellano A, Mogno F, Pispisa B, Romani GL, Vitale S. Magnetic properties of oxyhemoglobin. Proc Natl Acad Sci USA. 1977;74(2):398–400.

    Article  Google Scholar 

  30. Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN. Red blood cell magnetophoresis. Biophys J. 2003;84(4):2638–45.

    Article  Google Scholar 

  31. Li J, Tao R, Wu W, Cao H, Xin J, Guo J, et al. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev. 2010;19(9):1427–36.

    Article  Google Scholar 

  32. Piryaei A, Valojerdi M, Shahsavani M, Baharvand H. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev. 2011;7(1):103–18.

    Article  Google Scholar 

  33. Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Ramakrishna S, et al. Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. J Mater Chem B. 2013;1(32):3972–84.

    Article  Google Scholar 

  34. Varley H, Gowenlock AK, Bell M. Determination of plasma fibrinogen: tyrosine method. In: Lempert H, editor. Practical clinical biochemistry. 5th ed. London: Heinemann Medical Books; 1986. p. 557–8.

    Google Scholar 

  35. Ramsay WNM. Plasma Iron. In: Stewart OP, editor. Sabotka H. Advances in clinical chemistry. New York: Academic Press; 1969. p. 1–3.

    Google Scholar 

  36. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.

    Article  Google Scholar 

  37. Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987;8(2):93–9.

    Article  Google Scholar 

  38. Rallapalli S, Bishi DK, Verma RS, Cherian KM, Guhathakurta S. A multiplex PCR technique to characterize human bone marrow derived mesenchymal stem cells. Biotechnol Lett. 2009;31(12):1843–50.

    Article  Google Scholar 

  39. Yeh WC, Li PC, Jeng Y-M, Hsu HC, Kuo PL, Li ML, et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol. 2002;28(4):467–74.

    Article  Google Scholar 

  40. McDonagh J, Messel H, McDonagh RP Jr, Murano G, Blomback B. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method. Biochim Biophys Acta. 1972;257(1):135–42.

    Article  Google Scholar 

  41. Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009;30(28):4996–5003.

    Article  Google Scholar 

  42. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17–26.

    Article  Google Scholar 

  43. Kulangara K, Yang Y, Yang J, Leong KW. Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials. 2012;33(20):4998–5003.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Frontier Lifeline hospital’s basic research team for their technical assistance and SAIF, IIT Madras for VSM analysis of nanofibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Guhathakurta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishi, D.K., Guhathakurta, S., Venugopal, J.R. et al. Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. J Mater Sci: Mater Med 25, 2579–2589 (2014). https://doi.org/10.1007/s10856-014-5267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5267-4

Keywords

Navigation