Skip to main content

Advertisement

Log in

Investigating the surface reactivity of SiO2–TiO2–CaO–Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study focuses on evaluating the biocompatibility of a SiO2–TiO2–CaO–Na2O/SrO glass and glass–ceramic series. Glass and ceramic samples were synthesized and characterized using X-ray diffraction. Each material was subject to maturation in simulated body fluid over 1, 7 and 30 days to describe any changes in surface morphology. Calcium phosphate (CaP) deposition was observed predominantly on the Na+ containing amorphous and crystalline materials, with plate-like morphology. The precipitated surface layer was also observed to crystallize with respect to maturation, which was most evident in the amorphous Na+ containing glasses, Ly-N and Ly-C. The addition of Sr2+ greatly reduced the solubility of all samples, with limited CaP precipitation on the amorphous samples and no deposition on the crystalline materials. The morphology of the samples was also different, presenting irregular plate-like structures (Ly-N), needle-like deposits (Ly-C) and globular-like structures (Ly-S). Cell culture analysis presented a significant increase in cell viability with the Na+ materials, 134 %, while the Sr2+ containing glasses, 60–80 % and ceramics, 60–85 % presented a general reduction in cell viability, however these reductions were not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.

    Article  Google Scholar 

  2. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  3. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  Google Scholar 

  4. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967–78.

    Article  Google Scholar 

  5. Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29(7):1257–65.

    Article  Google Scholar 

  6. Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Raty S, Kuokkanen H, Sandor GK, Schmid C, Miettinen S, Suuronen R. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 2009;5(8):3122–31.

    Article  Google Scholar 

  7. Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A. Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass–ceramic scaffolds in chick embryos. Acta Biomater. 2009;5(1):374–80.

    Article  Google Scholar 

  8. Chen QZ, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3(4):551–62.

    Article  Google Scholar 

  9. Anderson JH, Goldberg JA, Bessent RG, Kerr DJ, McKillop JH, Stewart I, Cooke TG, McArdle CS. Glass yttrium-90 microspheres for patients with colorectal liver metastases. Radiother Oncol. 1992;25(2):137–9.

    Article  Google Scholar 

  10. Bortot MB, Prastalo S, Prado M. Production and characterization of glass microspheres for hepatic cancer treatment. Proc Mater Sci. 2009;1:351–8.

    Google Scholar 

  11. da Costa Guimaraes C, Moralles McRoberto Martinelli J. Monte Carlo simulation of liver cancer treatment with 166Ho-loaded glass microspheres. Radiat Phys Chem. 2014;95:185–7.

    Article  Google Scholar 

  12. Ladron de Guevara-Fernandez S, Ragel CV, Vallet-Regi M. Bioactive glass-polymer materials for controlled release of ibuprofen. Biomaterials. 2003;24(22):4037–43.

    Article  Google Scholar 

  13. Zhao L, Yan X, Zhou X, Zhou L, Wang H, Tang J, Yu C. Mesoporous bioactive glasses for controlled drug release. Microporous Mesoporous Mater. 2008;109:210–5.

    Article  Google Scholar 

  14. Ravarian R, Moztarzadeh F, Hashjin MS, Rabiee SM, Khoshakhlagh P, Tahriri M. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram Int. 2010;36(1):291–7.

    Article  Google Scholar 

  15. Goller G. The effect of bond coat on mechanical properties of plasma sprayed bioglass–titanium coatings. Ceram Int. 2004;30(3):351–5.

    Article  Google Scholar 

  16. Goller G, Demirkiran H, Oktar FN, Demirkesen E. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Int. 2003;29(6):721–4.

    Article  Google Scholar 

  17. Habibe AF, Maeda LD, Souza RC, Barboza MJR, Daguano JKMF, Rogero SO, Santos C. Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C. 2009;29(6):1959–64.

    Article  Google Scholar 

  18. Kashyap S, Griep K, Nychka JA. Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5. Mater Sci Eng C. 2011;31(4):762–9.

    Article  Google Scholar 

  19. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  Google Scholar 

  20. Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non-Cryst Solids. 2003;318:43–8.

    Article  Google Scholar 

  21. Filho OP, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  22. Chen X, Meng Y, Li Y, Zhao N. Investigation on bio-mineralization of melt and solgel derived bioactive glasses. Appl Surf Sci. 2008;255(2):562–4.

    Article  Google Scholar 

  23. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-Amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  Google Scholar 

  24. Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.

    Article  Google Scholar 

  25. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40:S5–8.

    Article  Google Scholar 

  26. Takadama H, Kim HM, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.

    Article  Google Scholar 

  27. Li Y, Coughlan A, Laffir FR, Pradhan D, Mellott NP, Wren AW. Investigating the mechanical durability of bioactive glasses as a function of structure, solubility and incubation time. J Non-Cryst Solids. 2013;380:25–34.

    Article  Google Scholar 

  28. Chen QZ, Li Y, Jin LY, Quinn JMW, Komesaroff PA. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Coughlan, A. & Wren, A.W. Investigating the surface reactivity of SiO2–TiO2–CaO–Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid. J Mater Sci: Mater Med 25, 1853–1864 (2014). https://doi.org/10.1007/s10856-014-5229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5229-x

Keywords

Navigation