Skip to main content
Log in

Effect of structure, topography and chemistry on fibroblast adhesion and morphology

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang SJ. Poly(lactic acid) and copolyesters. In: Bastioli C, editor. Handbook of biodegradable polymers. Shawbury: Rapra Technology; 2005. p. 287–301.

    Google Scholar 

  2. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10:2351–78.

    Article  Google Scholar 

  3. Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C, Gesualdo L, Cingolani R, Pisignano D. Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter. 2010;6:1668–74.

    Article  Google Scholar 

  4. Punet X, Mauchauffé R, Giannotti MI, Rodríguez-Cabello JC, Sanz F, Engel E, Mateos-Timoneda MA, Planell JA. Enhanced cell-material interactions through the biofunctionalization of polymeric surfaces with engineered peptides. Biomacromolecules. 2013;14:2690–702.

    Article  Google Scholar 

  5. Nagai M, Hayakawa T, Makimura M, Yoshinari M. Fibronectin immobilization using water-soluble carbodiimide on poly-L-lactic acid for enhancing initial fibroblast attachment. J Biomater Appl. 2006;21:33–47.

    Article  Google Scholar 

  6. Wen F, Chang S, Toh YC, Teoh SH, Yu H. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Mater Sci Eng, C. 2007;27:285–92.

    Article  Google Scholar 

  7. Zhu HG, Ji J, Shen JC. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility. Biomaterials. 2004;25:109–17.

    Article  Google Scholar 

  8. Rohman G, Baker SC, Southgate J, Cameron NR. Heparin functionalisation of porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft tissue engineering. J Mater Chem. 2009;19:9265–73.

    Article  Google Scholar 

  9. Jiao YP, Cui FZ. Surface modification of polyester biomaterials for tissue engineering. Biomed Mater. 2007;2:R24–37.

    Article  Google Scholar 

  10. Moroni L, De Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed. 2008;19:543–72.

    Article  Google Scholar 

  11. Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science. 2005;310:1135–8.

    Article  Google Scholar 

  12. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  Google Scholar 

  13. von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010;339:131–53.

    Article  Google Scholar 

  14. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10:637–44.

    Article  Google Scholar 

  15. Mills CA, Navarro M, Engel E, Martinez E, Ginebra MP, Planell JA, Errachid A, Samitier J. Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. J Biomed Mater Res, Part A. 2006;76A:781–7.

    Article  Google Scholar 

  16. Martinez E, Engel E, Lopez-Iglesias C, Mills CA, Planell JA, Samitier J. Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro/nanopatterned substrates: a study of cell–substrate interactions. Micron. 2008;39:111–6.

    Article  Google Scholar 

  17. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealy PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88.

    Article  Google Scholar 

  18. Kong HJ, Mooney DJ. Microenvironmental regulation of biomacromolecular therapies. Nat Rev Drug Discov. 2007;6:455–63.

    Article  Google Scholar 

  19. Lim JY, Donahue HJ. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007;13:1879–91.

    Article  Google Scholar 

  20. Kulangara K, Leong KW. Substrate topography shapes cell function. Soft Matter. 2009;5:4072–6.

    Article  Google Scholar 

  21. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.

    Article  Google Scholar 

  22. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Delivery Rev. 2009;61:1065–83.

    Article  Google Scholar 

  23. Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. A review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2009;24:7–29.

    Article  Google Scholar 

  24. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with imageJ. Biophotonics Int. 2004;11:36–42.

    Google Scholar 

  25. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38:1139–51.

    Article  Google Scholar 

  26. Sun H, Onneby S. Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym Int. 2006;55:1336–40.

    Article  Google Scholar 

  27. Cossement D, Gouttebaron R, Cornet V, Viville P, Hecq M, Lazzaroni R. PLA-PMMA blends: a study by XPS and ToF-SIMS. Appl Surf Sci. 2006;252:6636–9.

    Article  Google Scholar 

  28. Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Extracellular matrix and tissue engineering applications. J Mater Chem. 2009;19:5474–84.

    Article  Google Scholar 

  29. Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM. Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. J Appl Polym Sci. 2011;122:914–25.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the grant MAT2008-06887-C03 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel A. Mateos-Timoneda or Elisabeth Engel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateos-Timoneda, M.A., Castano, O., Planell, J.A. et al. Effect of structure, topography and chemistry on fibroblast adhesion and morphology. J Mater Sci: Mater Med 25, 1781–1787 (2014). https://doi.org/10.1007/s10856-014-5199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5199-z

Keywords

Navigation