Skip to main content

Surface Modified Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

  • 271 Accesses

Abstract

Fibrous scaffolds are commonly used as scaffolds in tissue engineering as they have remarkably high surface-area-to-volume ratio. Surface modification of fibrous constructs by employing innovative post-processing techniques such as chemical modifications, using coating gradients or active cues, avenues for tuning cellular respones. Most of the commercial polymers/unmodified polymeric scaffolds contribute little to generate biological activity. The below described methods offer plethora of chances by altering the complexity of fibers for efficient scale-up that would be relevant for industrial applications. It is also to be taken into consideration that while modifying the surface of these fibers, the mechanical properties of the materials are to be retained as such. In this chapter, we have discussed about the various modification chemistry and techniques to improve biological activity of the fibrous scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Google Scholar 

  2. Kang SW, Jeon O, Kim BS (2005) Poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng 11(3–4):438–447

    CAS  Google Scholar 

  3. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16(5):224–230

    CAS  Google Scholar 

  4. Guo X, Xia B, Lu XB, Zhang ZJ, Li Z, Li WL et al (2016) Grafting of mesenchymal stem cell-seeded small intestinal submucosa to repair the deep partial-thickness burns. Connect Tissue Res 57(5):388–397

    CAS  Google Scholar 

  5. Dulnik J, Denis P, Sajkiewicz P, Kołbuk D, Choińska E (2016) Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym Degrad Stab 130:10–21

    CAS  Google Scholar 

  6. Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41(3):422–430

    CAS  Google Scholar 

  7. Jiao YP, Cui FZ (2007) Surface modification of polyester biomaterials for tissue engineering. Biomed Mater 2(4):R24

    CAS  Google Scholar 

  8. Ikada Y (1994) Surface modification of polymers for medical applications. Biomaterials 15(10):725–736

    CAS  Google Scholar 

  9. Mathieu HJ (2001) Bioengineered material surfaces for medical applications. Surf Interface Anal 32(1):3–9

    CAS  Google Scholar 

  10. Niemczyk-Soczynska B, Gradys A, Sajkiewicz P (2020) Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering. Polymers 12(11):2636

    CAS  Google Scholar 

  11. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042

    CAS  Google Scholar 

  12. Jeznach O, Kolbuk D, Sajkiewicz P (2019) Aminolysis of various aliphatic polyesters in a form of nanofibers and films. Polymers 11(10):1669

    CAS  Google Scholar 

  13. Policastro GM, Lin F, Smith Callahan LA, Esterle A, Graham M, Sloan Stakleff K, Becker ML (2015) OGP functionalized phenylalanine-based poly (ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 16(4):1358–1371

    CAS  Google Scholar 

  14. Lee HJ, Park YH, Koh WG (2013) Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation. Adv Funct Mater 23(5):591–597

    CAS  Google Scholar 

  15. Li M, Wang S, Jiang J, Sun J, Li Y, Huang D, Long YZ, Zheng W, Chen S, Jiang X (2015) Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo. Nanoscale 7(17):8071–8075

    CAS  Google Scholar 

  16. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2006) A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7(5):1610–1622

    CAS  Google Scholar 

  17. He L, Shi Y, Han Q, Zuo Q, Ramakrishna S, Xue W, Zhou L (2012) Surface modification of electrospun nanofibrous scaffolds via polysaccharide–protein assembly multilayer for neurite outgrowth. J Mater Chem 22(26):13187–13196

    CAS  Google Scholar 

  18. Zhu Y, Gao C, He T, Liu X, Shen J (2003) Layer-by-layer assembly to modify poly (L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 4(2):446–452

    CAS  Google Scholar 

  19. Lv J, Chen L, Zhu Y, Hou L, Liu Y (2014) Promoting epithelium regeneration for esophageal tissue engineering through basement membrane reconstitution. ACS Appl Mater Interfaces 6(7):4954–4964

    CAS  Google Scholar 

  20. Liu W, Ni C, Chase DB, Rabolt JF (2013) Preparation of multilayer biodegradable nanofibers by triaxial electrospinning. ACS Macro Lett 2(6):466–468

    CAS  Google Scholar 

  21. Jordan AM, Viswanath V, Kim SE, Pokorski JK, Korley LT (2016) Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 4(36):5958–5974

    CAS  Google Scholar 

  22. Xie J, Michael PL, Zhong S, Ma B, MacEwan MR, Lim CT (2012) Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications. J Biomed Mater Res A 100(4):929–938

    Google Scholar 

  23. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  Google Scholar 

  24. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    CAS  Google Scholar 

  25. Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    CAS  Google Scholar 

  26. Zhong SP, Campoccia D, Doherty PJ, Williams RL, Benedetti L, Williams DF (1994) Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials 15(5):359–365

    CAS  Google Scholar 

  27. Deepthi S, Jeevitha K, Sundaram MN, Chennazhi KP, Jayakumar R (2015) Chitosan–hyaluronic acid hydrogel coated poly (caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485

    CAS  Google Scholar 

  28. Deepthi S, Sundaram MN, Kadavan JD, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500

    CAS  Google Scholar 

  29. Hayami JW, Surrao DC, Waldman SD, Amsden BG (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92(4):1407–1420

    Google Scholar 

  30. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29(30):4100–4107

    CAS  Google Scholar 

  31. Vaz CM, Van Tuijl S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1(5):575–582

    CAS  Google Scholar 

  32. Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH, Tae G (2012) Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 13(8):2287–2298

    CAS  Google Scholar 

  33. Sahoo S, Lok Toh S, Hong Goh JC (2010) PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. J Biomed Mater Res B Appl Biomater 95(1):19–28

    Google Scholar 

  34. Xu W, Ma J, Jabbari E (2010) Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater 6(6):1992–2002

    CAS  Google Scholar 

  35. McMahon RE, Qu X, Jimenez-Vergara AC, Bashur CA, Guelcher SA, Goldstein AS, Hahn MS (2011) Hydrogel–electrospun mesh composites for coronary artery bypass grafts. Tissue Eng Part C Methods 17(4):451–461

    CAS  Google Scholar 

  36. Mun CH, Jung Y, Kim SH, Lee SH, Kim HC, Kwon IK, Kim SH (2012) Three-dimensional electrospun poly (lactide-co-ɛ-caprolactone) for small-diameter vascular grafts. Tissue Eng A 18(15–16):1608–1616

    CAS  Google Scholar 

  37. Freeman JW, Woods MD, Cromer DA, Ekwueme EC, Andric T, Atiemo EA, Bijoux CH, Laurencin CT (2011) Evaluation of a hydrogel–fiber composite for ACL tissue engineering. J Biomech 44(4):694–699

    Google Scholar 

  38. Jayasree A, Kottappally Thankappan S, Ramachandran R, Sundaram MN, Chen CH, Mony U, Chen JP, Jayakumar R (2019) Bioengineered braided micro–nano (multiscale) fibrous scaffolds for tendon reconstruction. ACS Biomater Sci Eng 5:1476–1486

    CAS  Google Scholar 

  39. Park GE, Pattison MA, Park K, Webster TJ (2005) Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 26(16):3075–3082

    CAS  Google Scholar 

  40. Choi JS, Messersmith PB, Yoo HS (2014) Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion. Macromol Biosci 14(2):270–279

    CAS  Google Scholar 

  41. Krithica N, Natarajan V, Madhan B, Sehgal PK, Mandal AB (2012) Type I collagen immobilized poly(caprolactone) nanofibers: characterization of surface modification and growth of fibroblasts. Adv Eng Mater 14:B149–B154

    Google Scholar 

  42. Zhu Y, Mao Z, Gao C (2013) Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv 3(8):2509–2519

    CAS  Google Scholar 

  43. Wong FS, Chan BP, Lo AC (2014) Carriers in cell-based therapies for neurological disorders. Int J Mol Sci 15(6):10669–10723

    CAS  Google Scholar 

  44. Tang W, Becker ML (2014) “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 43(20):7013–7039

    CAS  Google Scholar 

  45. Viswanathan P, Themistou E, Ngamkham K, Reilly GC, Armes SP, Battaglia G (2015) Controlling surface topology and functionality of electrospun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion. Biomacromolecules 16(1):66–75

    CAS  Google Scholar 

  46. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    CAS  Google Scholar 

  47. Lancuški A, Bossard F, Fort S (2013) Carbohydrate-decorated PCL fibers for specific protein adhesion. Biomacromolecules 14(6):1877–1884

    Google Scholar 

  48. Lancuški A, Fort S, Bossard F (2012) Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry. ACS Appl Mater Interfaces 4(12):6499–6504

    Google Scholar 

  49. Galibert M, Sancey L, Renaudet O, Coll JL, Dumy P, Boturyn D (2010) Application of click–click chemistry to the synthesis of new multivalent RGD conjugates. Org Biomol Chem 8(22):5133–5138

    CAS  Google Scholar 

  50. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998

    CAS  Google Scholar 

  51. Zheng J, Liu K, Reneker DH, Becker ML (2012) Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition. J Am Chem Soc 134(41):17274–17277

    CAS  Google Scholar 

  52. Buhl M, Vonhören B, Ravoo BJ (2015) Immobilization of enzymes via microcontact printing and thiol–ene click chemistry. Bioconjug Chem 26(6):1017–1020

    CAS  Google Scholar 

  53. Khan M, Yang J, Shi C, Feng Y, Zhang W, Gibney K, Tew GN (2015) Surface modification of polycarbonate urethane with zwitterionic polynorbornene via thiol-ene click-reaction to facilitate cell growth and proliferation. Macromol Mater Eng 300(8):802–809

    CAS  Google Scholar 

  54. Auty SE, Andrén OC, Hern FY, Malkoch M, Rannard SP (2015) ‘One-pot’ sequential deprotection/functionalisation of linear-dendritic hybrid polymers using a xanthate mediated thiol/Michael addition. Polym Chem 6(4):573–582

    CAS  Google Scholar 

  55. Zheng J, Hua G, Yu J, Lin F, Wade MB, Reneker DH, Becker ML (2015) Post-electrospinning “triclick” functionalization of degradable polymer nanofibers. ACS Macro Lett 4(2):207–213

    CAS  Google Scholar 

  56. Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromolecules 16(5):1590–1597

    CAS  Google Scholar 

  57. Lin F, Zheng J, Yu J, Zhou J, Becker ML (2013) Cascading “triclick” functionalization of poly (caprolactone) thin films quantified via a quartz crystal microbalance. Biomacromolecules 14(8):2857–2865

    CAS  Google Scholar 

  58. Kim SE, Wallat JD, Harker EC, Advincula AA, Pokorski JK (2015) Multifunctional and spatially controlled bioconjugation to melt coextruded nanofibers. Polym Chem 6(31):5683–5692

    CAS  Google Scholar 

  59. Ma Y, Zheng J, Amond EF, Stafford CM, Becker ML (2013) Facile fabrication of “dual click” one-and two-dimensional orthogonal peptide concentration gradients. Biomacromolecules 14(3):665–671

    CAS  Google Scholar 

  60. Zheng J, Kontoveros D, Lin F, Hua G, Reneker DH, Becker ML, Willits RK (2015) Enhanced Schwann cell attachment and alignment using one-pot “dual click” GRGDS and YIGSR derivatized nanofibers. Biomacromolecules 16(1):357–363

    CAS  Google Scholar 

  61. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6):143–206

    Google Scholar 

  62. Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7(10):1091–1127

    CAS  Google Scholar 

  63. Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24(1–2):1–54

    CAS  Google Scholar 

  64. Israni N, Shivakumar S (2018) Interface influence of materials and surface modifications. In: Fundamental biomaterials: metals, pp 371–409

    Google Scholar 

  65. Neděla O, Slepička P, Švorčík V (2017) Surface modification of polymer substrates for biomedical applications. Materials 10(10):1115

    Google Scholar 

  66. Reichsöllner E, Creamer A, Cong S, Casey A, Eder S, Heeney M, Glöcklhofer F (2019) Fast and selective post-polymerization modification of conjugated polymers using dimethyldioxirane. Front Chem 7:123

    Google Scholar 

  67. Kull KR, Steen ML, Fisher ER (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J Membr Sci 246(2):203–215

    CAS  Google Scholar 

  68. Sanchis MR, Blanes V, Blanes M, Garcia D, Balart R (2006) Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur Polym J 42(7):1558–1568

    CAS  Google Scholar 

  69. Bartnik A, Skrzeczanowski W, Fiedorowicz H, Wachulak P, Fok T, Węgrzyński Ł, Jarocki R (2018) Photoionized plasmas induced in molecular gases by extreme ultraviolet and X-ray pulses. In: EPJ web of conferences 167, 03003

    Google Scholar 

  70. Kalani MM, Nourmohammadi J, Negahdari B (2018) Osteogenic potential of Rosuvastatin immobilized on silk fibroin nanofibers using argon plasma treatment. Biomed Mater 14(2):025002

    Google Scholar 

  71. Grace JM, Gerenser LJ (2003) Plasma treatment of polymers. J Dispers Sci Technol 24(3–4):305–341

    CAS  Google Scholar 

  72. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res, Sect B 208:281–286

    CAS  Google Scholar 

  73. Huang YC, Huang CC, Huang YY, Chen KS (2007) Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A 82(4):842–851

    Google Scholar 

  74. Ogino A, Noguchi S, Nagatsu M (2009) Effect of plasma pretreatment on heparin immobilization on polymer sheet. J Photopolym Sci Technol 22(4):461–466

    CAS  Google Scholar 

  75. Nardulli M, Belviso M, Favia P, d’Agostino R, Gristina R (2010) The study of specific and nonspecific hepatoma cells behavior by means of plasma-treated substrates. J Biomed Mater Res B Appl Biomater 94(1):97–107

    CAS  Google Scholar 

  76. Siri S, Wadbua P, Amornkitbamrung V, Kampa N, Maensiri S (2010) Surface modification of electrospun PCL scaffolds by plasma treatment and addition of adhesive protein to promote fibroblast cell adhesion. Mater Sci Technol 26(11):1292–1297

    CAS  Google Scholar 

  77. Zhu X, Chian KS, Chan-Park MBE, Lee ST (2005) Effect of argon-plasma treatment on proliferation of human-skin–derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A 73(3):264–274

    Google Scholar 

  78. Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206

    CAS  Google Scholar 

  79. Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P (2013) Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater 9(4):5997–6005

    CAS  Google Scholar 

  80. Yildirim ED, Besunder R, Pappas D, Allen F, Güçeri S, Sun W (2010) Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2(1):014109

    Google Scholar 

  81. Satulovsky J, Carignano MA, Szleifer I (2000) Kinetic and thermodynamic control of protein adsorption. Proc Natl Acad Sci 97(16):9037–9041

    CAS  Google Scholar 

  82. Messina GM, Satriano C, Marletta G (2009) A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces. Colloids Surf B Biointerfaces 70(1):76–83

    CAS  Google Scholar 

  83. Sankar D, Shalumon KT, Chennazhi KP, Menon D, Jayakumar R (2014) Surface plasma treatment of poly (caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Tissue Eng A 20:1689–1702

    CAS  Google Scholar 

  84. Sankar D, Mony U, Rangasamy J (2021) Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. Mater Sci Eng C 127:112206

    CAS  Google Scholar 

  85. Griffin MF, Ibrahim A, Seifalian AM, Butler PE, Kalaskar DM, Ferretti P (2019) Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Mater Sci Eng C 105:110085

    CAS  Google Scholar 

  86. Wang M, Zhou Y, Shi D, Chang R, Zhang J, Keidar M, Webster TJ (2019) Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core–shell nanofibers for bone tissue engineering applications. Biomater Sci 7(6):2430–2439

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashok, N., Sankar, D., Jayakumar, R. (2023). Surface Modified Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_143

Download citation

Publish with us

Policies and ethics