Skip to main content
Log in

Biological activity and migration of wear particles in the knee joint: an in vivo comparison of six different polyethylene materials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Wear of polyethylene causes loosening of joint prostheses because of the particle mediated activity of the host tissue. It was hypothesized that conventional and crosslinked polyethylene particles lead to similar biological effects around the knee joint in vivo as well as to a similar particle distribution in the surrounding tissues. To verify these hypotheses, particle suspensions of six different polyethylene materials were injected into knee joints of Balb/C mice and intravital microscopic, histological and immunohistochemical evaluations were done after 1 week. Whereas the biological effects on the synovial layer and the subchondral bone of femur and tibia were similar for all the polyethylenes, two crosslinked materials showed an elevated cytokine expression in the articular cartilage. Furthermore, the distribution of particles around the joint was dependent on the injected polyethylene material. Those crosslinked particles, which remained mainly in the joint space, showed an increased expression of TNF-alpha in articular cartilage. The data of this study support the use of crosslinked polyethylene in total knee arthroplasty. In contrast, the presence of certain crosslinked wear particles in the joint space can lead to an elevated inflammatory reaction in the remaining cartilage, which challenges the potential use of those crosslinked polyethylenes for unicondylar knee prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asano T, Akagi M, Clarke IC, Masuda S, Ishii T, Nakamura T. Dose effects of cross-linking polyethylene for total knee arthroplasty on wear performance and mechanical properties. J Biomed Mater Res B Appl Biomater. 2007;83(2):615–22. doi:10.1002/jbm.b.30835.

    Article  Google Scholar 

  2. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res. 2007;454:251–61. doi:10.1097/01.blo.0000238813.95035.1b.

    Article  Google Scholar 

  3. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25(24):5515–22. doi:10.1016/j.biomaterials.2003.12.048.

    Article  Google Scholar 

  4. Fisher J, McEwen HM, Tipper JL, Galvin AL, Ingram J, Kamali A, et al. Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop Relat Res. 2004;428:114–9.

    Article  Google Scholar 

  5. Campbell P, Doorn P, Dorey F, Amstutz HC. Wear and morphology of ultra-high molecular weight polyethylene wear particles from total hip replacements. Proc Inst Mech Eng [H]. 1996;210(3):167–74.

    Article  Google Scholar 

  6. Chang CH, Fang HW, Ho YC, Huang HT. Chondrocyte acting as phagocyte to internalize polyethylene wear particles and leads to the elevations of osteoarthritis associated NO and PGE2. Biochem Biophys Res Commun. 2008;369(3):884–8. doi:10.1016/j.bbrc.2008.02.123.

    Article  Google Scholar 

  7. Castillo EC, Kouri JB. A new role for chondrocytes as non-professional phagocytes. An in vitro study. Microsc Res Tech. 2004;64(3):269–78. doi:10.1002/jemt.20080.

    Article  Google Scholar 

  8. 14243 ISOI. Implants for surgery—wear of total knee-joint-prostheses—part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for tests. Geneva: International Standard Organization. 2002.

  9. Utzschneider S, Harrasser N, Schroeder C, Mazoochian F, Jansson V. Wear of contemporary total knee replacements: a knee simulator study of six current designs. Clin Biomech. 2009;24(7):583–8. doi:10.1016/j.clinbiomech.2009.04.007.

    Article  Google Scholar 

  10. Niedzwiecki S, Klapperich C, Short J, Jani S, Ries M, Pruitt L. Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage. J Biomed Mater Res. 2001;56(2):245–9.

    Article  Google Scholar 

  11. 17853. IASI. Wear of implant particles—polymer and metal wear particles—isolation, characterization and quantification. Geneva: International Organization for Standardization. 2008.

  12. Utzschneider S, Paulus A, Datz JC, Schroeder C, Sievers B, Wegener B, et al. Influence of design and bearing material on polyethylene wear particle generation in total knee replacement. Acta Biomater. 2009;5(7):2495–502. doi:10.1016/j.actbio.2009.03.016.

    Article  Google Scholar 

  13. Paulus A, Schröder C, Sievers B, Frenzel J, Jansson V, Utzschneider S. Evaluation of different methods to eliminate adherent endotoxin of polyethylene wear particles. Wear. 2012;295:319–25.

    Article  Google Scholar 

  14. Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA, Glant TT. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg Am Vol. 2001;83(A(2)):201–11.

    Google Scholar 

  15. Yao J, Cs-Szabo G, Jacobs JJ, Kuettner KE, Glant TT. Suppression of osteoblast function by titanium particles. J Bone Joint Surg Am Vol. 1997;79(1):107–12.

    Google Scholar 

  16. Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Am Vol. 1999;81(3):516–21.

    Article  Google Scholar 

  17. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19(24):2297–302.

    Article  Google Scholar 

  18. Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E. Comparison of the response of primary murine peritoneal macrophages and the U937 human histiocytic cell line to challenge with in vitro generated clinically relevant UHMWPE particles. Bio-Med Mater Eng. 2000;10(3–4):229–40.

    Google Scholar 

  19. Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O, et al. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater. 2010;6(11):4296–304. doi:10.1016/j.actbio.2010.06.002.

    Article  Google Scholar 

  20. Zysk SP, Gebhard H, Plitz W, Buchhorn GH, Sprecher CM, Jansson V, et al. Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res B Appl Biomater. 2004;71(1):108–15. doi:10.1002/jbm.b.30075.

    Article  Google Scholar 

  21. Zysk SP, Gebhard HH, Kalteis T, Schmitt-Sody M, Jansson V, Messmer K, et al. Particles of all sizes provoke inflammatory responses in vivo. Clin Orthop Relat Res. 2005;433:258–64.

    Article  Google Scholar 

  22. Zeintl H, Sack FU, Intaglietta M, Messmer K. Computer assisted leukocyte adhesion measurement in intravital microscopy. Int J Microcirc Clin Exp. 1989;8(3):293–302.

    Google Scholar 

  23. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23(2):517–26.

    Article  Google Scholar 

  24. Brackertz D, Mitchell GF, Mackay IR. Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum. 1977;20(3):841–850.

    Google Scholar 

  25. Lorber V, Paulus AC, Buschmann A, Schmitt B, Grupp TM, Jansson V, et al. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo. J Mater Sci Mater Med. 2014;25(1):141–9. doi:10.1007/s10856-013-5037-8.

    Article  Google Scholar 

  26. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am Vol. 1992;74(6):849–63.

    Google Scholar 

  27. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am Vol. 2000;82(4):457–76.

    Google Scholar 

  28. Gallo J, Slouf M, Goodman SB. The relationship of polyethylene wear to particle size, distribution, and number: a possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res B Appl Biomater. 2010;94(1):171–7. doi:10.1002/jbm.b.31638.

    Google Scholar 

  29. Greenfield EM, Bi Y, Ragab AA, Goldberg VM, Nalepka JL, Seabold JM. Does endotoxin contribute to aseptic loosening of orthopedic implants? J Biomed Mater Res B Appl Biomater. 2005;72(1):179–85. doi:10.1002/jbm.b.30150.

    Article  Google Scholar 

  30. Revell PA. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface. 2008;5(28):1263–78. doi:10.1098/rsif 2008.0142.

    Article  Google Scholar 

  31. Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res. 1998;41(4):600–7.

    Article  Google Scholar 

  32. Endo M, Tipper JL, Barton DC, Stone MH, Ingham E, Fisher J. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc Inst Mech Eng [H]. 2002;216(2):111–22.

    Article  Google Scholar 

  33. Fisher J, Bell J, Barbour PS, Tipper JL, Matthews JB, Besong AA, et al. A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Inst Mech Eng [H]. 2001;215(2):127–32.

    Article  Google Scholar 

  34. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53(5):490–7.

    Article  Google Scholar 

  35. Illgen RL 2nd, Forsythe TM, Pike JW, Laurent MP, Blanchard CR. Highly crosslinked vs conventional polyethylene particles–an in vitro comparison of biologic activities. J Arthroplast. 2008;23(5):721–31. doi:10.1016/j.arth.2007.05.043.

    Article  Google Scholar 

  36. Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng [H]. 2000;214(1):21–37.

    Article  Google Scholar 

  37. Ingram JH, Kowalski R, Fisher J, Ingham E. The osteolytic response of macrophages to challenge with particles of Simplex P, Endurance, Palacos R, and Vertebroplastic bone cement particles in vitro. J Biomed Mater Res B Appl Biomater. 2005;75(1):210–20. doi:10.1002/jbm.b.30308.

    Article  Google Scholar 

  38. Kraft CN, Schlegel U, Pfluger D, Eijer H, Textor J, Hansis M, et al. Radiological signs of osteitis around extramedullary metal implants. A radiographic-microbiological correlative analysis in rabbit tibiae after local inoculation of Staphylococcus aureus. Arch Orthop Trauma Surg. 2001;121(6):338–42.

    Article  Google Scholar 

  39. Kraft CN, Diedrich O, Burian B, Schmitt O, Wimmer MA. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel. J Bone Joint Surg Br. 2003;85(1):133–41.

    Article  Google Scholar 

  40. Howie DW, Vernon-Roberts B. The synovial response to intraarticular cobalt-chrome wear particles. Clin Orthop Relat Res. 1988;232:244–54.

    Google Scholar 

  41. Howie DW, Manthey B, Hay S, Vernon-Roberts B. The synovial response to intraarticular injection in rats of polyethylene wear particles. Clin Orthop Relat Res. 1993;292:352–7.

    Google Scholar 

  42. Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35(2):215–23. doi:10.1007/s00264-010-1161-y.

    Article  Google Scholar 

  43. Illgen RL 2nd, Bauer LM, Hotujec BT, Kolpin SE, Bakhtiar A, Forsythe TM. Highly crosslinked vs conventional polyethylene particles: relative in vivo inflammatory response. J Arthroplast. 2009;24(1):117–24. doi:10.1016/j.arth.2008.01.134.

    Article  Google Scholar 

  44. Kurtz SM, Costa L. UHMWPE for arthroplasty: from powder to debris. Editorial comment: a perspective on polyethylene. Clin Orthop Relat Res. 2011;469(8):2260–1. doi:10.1007/s11999-011-1853-7.

    Article  Google Scholar 

  45. Inacio MC, Cafri G, Paxton EW, Kurtz SM, Namba RS. Alternative bearings in total knee arthroplasty: risk of early revision compared to traditional bearings: an analysis of 62,177 primary cases. Acta Orthop. 2013;84(2):145–52. doi:10.3109/17453674.2013.784660.

    Article  Google Scholar 

  46. Hodrick JT, Severson EP, McAlister DS, Dahl B, Hofmann AA. Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop Relat Res. 2008;466(11):2806–12. doi:10.1007/s11999-008-0472-4.

    Article  Google Scholar 

  47. Minoda Y, Aihara M, Sakawa A, Fukuoka S, Hayakawa K, Tomita M, et al. Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty. Knee. 2009;16(5):348–51. doi:10.1016/j.knee.2009.01.005.

    Article  Google Scholar 

  48. Libouban H, Massin P, Gaudin C, Mercier P, Basle MF, Chappard D. Migration of wear debris of polyethylene depends on bone microarchitecture. J Biomed Mater Res B Appl Biomater. 2009;90(2):730–7. doi:10.1002/jbm.b.31341.

    Article  Google Scholar 

  49. Otto M. Classification of prosthetic loosening and determination of wear particles. Der Pathol. 2008;29(Suppl 2):232–9. doi:10.1007/s00292-008-1070-7.

    Article  Google Scholar 

  50. Massin P, Chappard D, Flautre B, Hardouin P. Migration of polyethylene particles around nonloosened cemented femoral components from a total hip arthroplasty-an autopsy study. J Biomed Mater Res B Appl Biomater. 2004;69(2):205–15. doi:10.1002/jbm.b.30001.

    Article  Google Scholar 

  51. Burian B, Wimmer MA, Kunze J, Sprecher CM, Pennekamp PH, von Engelhardt LV, et al. Systemic spread of wear debris: an in vivo study. Z Orthop Ihre Grenzgeb. 2006;144(5):539–44. doi:10.1055/s-2006-942168.

    Article  Google Scholar 

  52. Park DY, Min BH, Kim DW, Song BR, Kim M, Kim YJ. Polyethylene wear particles play a role in development of osteoarthritis via detrimental effects on cartilage, meniscus, and synovium. OARS. 2013;21(12):2021–9. doi:10.1016/j.joca.2013.09.013.

    Google Scholar 

  53. Catelas I, Wimmer MA, Utzschneider S. Polyethylene and metal wear particles: characteristics and biological effects. Semin Immunopathol. 2011;33(3):257–71. doi:10.1007/s00281-011-0242-3.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the private foundation for medical research “Dr.-Auguste-Schaedel-Dantscher” and Stryker Orthopedics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Utzschneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utzschneider, S., Lorber, V., Dedic, M. et al. Biological activity and migration of wear particles in the knee joint: an in vivo comparison of six different polyethylene materials. J Mater Sci: Mater Med 25, 1599–1612 (2014). https://doi.org/10.1007/s10856-014-5176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5176-6

Keywords

Navigation