Skip to main content
Log in

Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Well dispersed 45S5 Bioglass® (BG)-graphene nanoplatelets (GNP) composites were prepared after optimising the processing conditions. Fully dense BG nanocomposites with GNP loading of 1, 3 and 5 vol% were consolidated using Spark plasma sintering (SPS). SPS avoided any structural damage of GNP as confirmed using Raman spectroscopy. GNP increased the viscosity of BG-GNP composites resulting in an increase in the sintering temperature by ~50 °C compared to pure BG. Electrical conductivity of BG-GNP composites increased with increasing concentration of GNP. The highest conductivity of 13 S/m was observed for BG-GNP (5 vol%) composite which is ~9 orders of magnitude higher compared to pure BG. For both BG and BG-GNP composites, in vitro bioactivity testing was done using simulated body fluid for 1 and 3 days. XRD confirmed the formation of hydroxyapatite for BG and BG-GNP composites with cauliflower structures forming on top of the nano-composites surface. GNP increased the electrical conductivity of BG-GNP composites without affecting the bioactivity thus opening the possibility to fabricate bioactive and electrically conductive scaffolds for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A. 1971;5(6):117.

    Article  Google Scholar 

  2. Hench LL. The story of Bioglass (R). J Mater Sci-Mater M. 2006;17(11):967–78. doi:10.1007/s10856-006-0432-z.

    Article  Google Scholar 

  3. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19(16):1419–23. doi:10.1016/S0142-9612(98)00133-1.

    Article  Google Scholar 

  4. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–303. doi:10.1016/S0142-9612(99)00181-7.

    Article  Google Scholar 

  5. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc. 2003;23(15):2921–30. doi:10.1016/S0955-2219(03)00303-0.

    Article  Google Scholar 

  6. Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases. 2012;7(1–4):41. doi:10.1007/S13758-012-0041-Y.

    Google Scholar 

  7. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Bioph Res Co. 2000;276(2):461–5. doi:10.1006/bbrc.2000.3503.

    Article  Google Scholar 

  8. Cao WP, Hench LL. Bioactive materials. Ceram Int. 1996;22(6):493–507. doi:10.1016/0272-8842(95)00126-3.

    Article  Google Scholar 

  9. Drnovsek N, Novak S, Dragin U, Ceh M, Gorensek M, Gradisar M. Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop. 2012;36(8):1739–45. doi:10.1007/s00264-012-1520-y.

    Article  Google Scholar 

  10. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199–207. doi:10.1089/ten.teb.2009.0416.

    Article  Google Scholar 

  11. Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93A(2):475–83. doi:10.1002/Jbm.A.32564.

    Google Scholar 

  12. Anderson AB, Dallmier AW, Chudzik SJ, Duran LW, Guire PE, Hergenrother RW, et al. Technologies for the surface modification of biomaterials. In: Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL, editors. Biomaterials in orthopedics. New York: Marcel Dekker Inc; 2004. p. 123.

  13. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi:10.1021/Tx200339h.

    Article  Google Scholar 

  14. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res. 2002;59(3):499–506. doi:10.1002/Jbm5.

    Article  Google Scholar 

  15. Hrapovic S, Liu YL, Male KB, Luong JHT. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem. 2004;76(4):1083–8. doi:10.1021/Ac035143t.

    Article  Google Scholar 

  16. Khang D, Park GE, Webster TJ. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A. 2008;86A(1):253–60. doi:10.1002/Jbm.A.31803.

    Article  Google Scholar 

  17. Yang WR, Thordarson P, Gooding JJ, Ringer SP, Braet F. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007;18(41):412001. doi:10.1088/0957-4484/18/41/412001.

    Google Scholar 

  18. Li XM, Gao H, Uo M, Sato Y, Akasaka T, Feng QL, et al. Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A. 2009;91A(1):132–9. doi:10.1002/Jbm.A.32203.

    Article  Google Scholar 

  19. Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6(3):562–7. doi:10.1021/Nl051861e.

    Article  Google Scholar 

  20. Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini AR. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res A. 2011;99A:435–44.

    Article  Google Scholar 

  21. Afrin R, Khaliq J, Islam M, Gul IH, Bhatti AS, Manzoord U. Synthesis of multiwalled carbon nanotube-based infrared radiation detector. Sensor Actuat a-Phys. 2012;187:73–8. doi:10.1016/j.sna.2012.08.028.

    Article  Google Scholar 

  22. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8. doi:10.1126/science.1157996.

    Article  Google Scholar 

  23. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.

    Article  Google Scholar 

  24. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7. doi:10.1021/Nl0731872.

    Article  Google Scholar 

  25. Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini AR, Dlouhý I et al. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mat. 2013;14:055007. doi:10.1088/1468-6996/14/5/055007.

  26. Fan YC, Wang LJ, Li JL, Li JQ, Sun SK, Chen F, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010;48(6):1743–9. doi:10.1016/j.carbon.2010.01.017.

    Article  Google Scholar 

  27. Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci. 2009;44(8):1934–51. doi:10.1007/s10853-009-3262-9.

    Article  Google Scholar 

  28. Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR. 45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene. Mater Sci Eng C. 2013;33(7):3592–600.

    Article  Google Scholar 

  29. Porwal H, Grasso S, Reece M. Review of graphene-ceramic matrix composites. Adv Appl Ceram. 2013;112(8):443. doi:10.1179/174367613X13764308970581.

    Article  Google Scholar 

  30. Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL. Toughening in graphene ceramic composites. ACS Nano. 2011;5(4):3182–90. doi:10.1021/Nn200319d.

    Article  Google Scholar 

  31. Kvetkova L, Duszova A, Hvizdos P, Dusza J, Kun P, Balazsi C. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Mater. 2012;66(10):793–6. doi:10.1016/j.scriptamat.2012.02.009.

    Article  Google Scholar 

  32. Grasso S, Chinnam RK, Porwal H, Boccaccini AR, Reece MJ. Low temperature spark plasma sintering of 45S5 Bioglass®. J Non-Cryst Solids. 2013;362:25–9.

    Article  Google Scholar 

  33. Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhý I, Reece M. Graphene reinforced alumina nano-composites. Carbon. 2013;64:359–69. doi:10.1016/j.carbon.2013.07.086.

    Article  Google Scholar 

  34. Khan U, O’Neill A, Lotya M, De S, Coleman JN. High-concentration solvent exfoliation of graphene. Small. 2010;6(7):864–71. doi:10.1002/smll.200902066.

    Article  Google Scholar 

  35. Yi M, Shen ZG, Zhang XJ, Ma SL. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J Phys D Appl Phys. 2013;46(2):025301. doi:10.1088/0022-3727/46/2/025301.

  36. Khan U, O’Neill A, Porwal H, May P, Nawaz K, Coleman JN. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon. 2012;50(2):470–5. doi:10.1016/j.carbon.2011.09.001.

    Article  Google Scholar 

  37. Khan U, May P, Porwal H, Nawaz K, Coleman JN. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. Acs Appl Mater Inter. 2013;5(4):1423–8. doi:10.1021/Am302864f.

    Article  Google Scholar 

  38. Tadashi Kokubo HT. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  Google Scholar 

  39. Bednarcik J, Michalik S, Kolesar V, Rutt U, Franz H. In situ XRD studies of nanocrystallization of Fe-based metallic glass: a comparative study by reciprocal and direct space methods. Phys Chem Chem Phys. 2013;15(22):8470–9. doi:10.1039/C3cp44445g.

    Article  Google Scholar 

  40. Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569–81. doi:10.1038/Nmat3064.

    Article  Google Scholar 

  41. Yoon D, Son YW, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011;11(8):3227–31. doi:10.1021/Nl201488g.

    Article  Google Scholar 

  42. Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK, et al. Subjecting a graphene monolayer to tension and compression. Small. 2009;5(21):2397–402. doi:10.1002/smll.200900802.

    Article  Google Scholar 

  43. Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, et al. Carbon nanotubes: do they toughen brittle matrices? J Mater Sci. 2011;46(14):4770–9. doi:10.1007/s10853-011-5387-x.

    Article  Google Scholar 

  44. Peitl O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30(4):509–14.

    Article  Google Scholar 

  45. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank European Union’s Seventh Framework Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea (Marie Curie Action, GlaCERCo GA 264526) for their support and funding for this research. We are also grateful to Dr. Mahesh Kumar Mani (Cardiff University, UK) and Mr Rama Krishna Chinnam (University of Erlangen-Nuremberg, Germany) for helping with some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike J. Reece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porwal, H., Grasso, S., Cordero-Arias, L. et al. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites. J Mater Sci: Mater Med 25, 1403–1413 (2014). https://doi.org/10.1007/s10856-014-5172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5172-x

Keywords

Navigation