Skip to main content
Log in

Composite chitosan and calcium sulfate scaffold for dual delivery of vancomycin and recombinant human bone morphogenetic protein-2

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A biodegradable, composite bone graft, composed of chitosan microspheres embedded in calcium sulfate, was evaluated in vitro for point-of-care loading and delivery of antibiotics and growth factors to prevent infection and stimulate healing in large bone injuries. Microspheres were loaded with rhBMP-2 or vancomycin prior to mixing into calcium sulfate loaded with vancomycin. Composites were evaluated for set time, drug release kinetics, and bacteriostatic/bactericidal activity of released vancomycin, induction of ALP expression by released rhBMP-2, and interaction of drugs on cells. Results showed the composite set in under 36 min and released vancomycin levels that were bactericidal to S. aureus (>MIC 8–16 μg/mL) for 18 days. Composites exhibited a 1 day-delayed release, followed by a continuous release of rhBMP-2 over 6 weeks; ranging from 0.06 to 1.49 ng/mL, and showed a dose dependent release based on initial loading. Released rhBMP-2 levels were, however, too low to induce detectable levels of ALP in W20-17 cells, due to the affinity of rhBMP-2 for calcium-based materials. With stimulating amounts of rhBMP-2 (>50 ng/mL), the ALP response from W-20-17 cells was inhibited when exposed to high vancomycin levels (1,800–3,600 μg/mL). This dual-delivery system is an attractive alternative to single delivery or preloaded systems for bone regeneration since it can simultaneously fight infection and deliver a potent growth factor. Additionally, this composite can accommodate a wide range of therapeutics and thus be customizable for specific patient needs, however, the potential interactive effects of multiple agents must be investigated to ensure that functional activity is not altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today. 2010;13:24–30.

    Article  Google Scholar 

  2. Nair MB, Kretlow JD, Mikos AG, Kasper FK. Infection and tissue engineering in segmental bone defects mini review. Curr Opin Biotechnol. 2011;22:721–5.

    Article  Google Scholar 

  3. Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK. Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis. 2007;15(45):409–15.

    Article  Google Scholar 

  4. Owens BD, Kragh JF, Wenke JC, Macaitis J, Wade CE, Holcomb JB. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J Trauma. 2008;64:295–9.

    Article  Google Scholar 

  5. Owens BD, Kragh JF, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21:254–7.

    Article  Google Scholar 

  6. Wenke JC, Guelcher SA. Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures. Expert Opin Drug Deliv. 2011;8:1555–69.

    Article  Google Scholar 

  7. Bosse MJ, MacKenzie EJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, et al. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N Engl J Med. 2002;12(347):1924–31.

    Article  Google Scholar 

  8. Suzuki A, Terai H, Toyoda H, Namikawa T, Yokota Y, Tsunoda T, et al. A biodegradable delivery system for antibiotics and recombinant human bone morphogenetic protein-2: a potential treatment for infected bone defects. J Orthop Res. 2006;24:327–32.

    Article  Google Scholar 

  9. Howell WR, Goulston C. Osteomyelitis: an update for hospitalists. Hosp Pract. 2011;39:153–60.

    Article  Google Scholar 

  10. Jones RN. Resistance patterns among nosocomial pathogens: trends over the past few years. Chest. 2001;119:397S–404S.

    Article  Google Scholar 

  11. Stewart RL, Cox JT, Volgas D, Stannard J, Duffy L, Waites KB, et al. The use of a biodegradable, load-bearing scaffold as a carrier for antibiotics in an infected open fracture model. J Orthop Trauma. 2010;24:587–91.

    Article  Google Scholar 

  12. Thomas DB, Brooks DE, Bice TG, DeJong ES, Lonergan KT, Wenke JC. Tobramycin-impregnated calcium sulfate prevents infection in contaminated wounds. Clin Orthop Relat Res. 2005;441:366–71.

    Article  Google Scholar 

  13. Noel SP, Courtney HS, Bumgardner JD, Haggard WO. Chitosan sponges to locally deliver amikacin and vancomycin: a pilot in vitro evaluation. Clin Orthop Relat Res. 2010;468:2074–80.

    Article  Google Scholar 

  14. Nelson CL, Mclaren SG, Skinner RA, Smeltzer MS, Thomas JR, Olsen KM. The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. East. 2002;20:643–7.

    Google Scholar 

  15. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res. 2011;29:1070–4.

    Article  Google Scholar 

  16. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg. 2002;10:53–60.

    Google Scholar 

  17. Yarboro SR, Baum EJ, Dahners LE. Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am. 2007;89:929–33.

    Article  Google Scholar 

  18. Hanssen AD. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res. 2005;437:91–6.

    Article  Google Scholar 

  19. Lee D-W, Yun Y-P, Park K, Kim SE. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone. 2012;50:974–82.

    Article  Google Scholar 

  20. Liu S-J, Chi P-S, Lin S–S, Ueng SW-N, Chan E-C, Chen J-K. Novel solvent-free fabrication of biodegradable poly-lactic-glycolic acid (PLGA) capsules for antibiotics and rhBMP-2 delivery. Int J Pharm. 2007;7(330):45–53.

    Article  Google Scholar 

  21. Li X, Xu J, Filion TM, Ayers DC, Song J. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute. Clin Orthop Relat Res. 2013;471:2540–7.

    Article  Google Scholar 

  22. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;15(274):1–33.

    Google Scholar 

  23. Glatt V, Kwong FN, Park K, Parry N, Griffin D, Vrahas M, et al. Ability of recombinant human bone morphogenetic protein 2 to enhance bone healing in the presence of tobramycin: evaluation in a rat segmental defect model. J Orthop Trauma. 2009;23:693–701.

    Article  Google Scholar 

  24. Strobel C, Bormann N, Kadow-Romacker A, Schmidmaier G, Wildemann B. Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants. J Control Release. 2011;30(156):37–45.

    Article  Google Scholar 

  25. Wang Y, Wang X, Li H, Xue D, Shi Z, Qi Y, et al. Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg. 2011;131:991–1001.

    Article  Google Scholar 

  26. Guelcher SA, Brown KV, Li B, Guda T, Lee B-H, Wenke JC. Dual-purpose bone grafts improve healing and reduce infection. J Orthop Trauma. 2011;25:477–82.

    Article  Google Scholar 

  27. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84-A:1032–44.

    Google Scholar 

  28. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11:471–91.

    Article  Google Scholar 

  29. Seeherman H, Wozney J, Li R. Bone morphogenetic protein delivery systems. Spine. 2002;27:S16–23.

    Article  Google Scholar 

  30. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006;15(133):185–92.

    Article  Google Scholar 

  31. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.

    Article  Google Scholar 

  32. Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res. 2009;88:491–502.

    Article  Google Scholar 

  33. Reves BT, Bumgardner JD, Cole JA, Yang Y, Haggard WO. Lyophilization to improve drug delivery for chitosan–calcium phosphate bone scaffold construct: a preliminary investigation. J Biomed Mater Res. 2009;90:1–10.

    Article  Google Scholar 

  34. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002;395:44–52.

    Article  Google Scholar 

  35. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res. 2006;76:456–68.

    Article  Google Scholar 

  36. Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res. 2009;88:597–610.

    Article  Google Scholar 

  37. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, CLSI document M07-A9. 9th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

  38. Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of Osteoset, a calcium sulfate bone void filler. Biomaterials. 2000;21:2413–25.

    Article  Google Scholar 

  39. Wichelhaus TA, Dingeldein E, Rauschmann M, Kluge S, Dieterich R, Schäfer V, et al. Elution characteristics of vancomycin, teicoplanin, gentamicin and clindamycin from calcium sulphate beads. J Antimicrob Chemother. 2001;48:117–9.

    Article  Google Scholar 

  40. Richelsoph KC, Webb ND, Haggard WO. Elution behavior of daptomycin-loaded calcium sulfate pellets: a preliminary study. Clin Orthop Relat Res. 2007;461:68–73.

    Google Scholar 

  41. Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26:2677–84.

    Article  Google Scholar 

  42. Kwon B, Jenis LG. Carrier materials for spinal fusion. Spine J. 2005;5:224S–30S.

    Article  Google Scholar 

  43. Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 2001;19:255–65.

    Article  Google Scholar 

  44. Calori GM, Donati D, Di Bella C, Tagliabue L. Bone morphogenetic proteins and tissue engineering: future directions. Injury. 2009;40(Suppl 3):S67–76.

    Article  Google Scholar 

  45. Ricci JL, Alexander H, Nadkarni P, Hawkins M, Turner J, Rosenblum S, et al. Biological mechanisms of calcium sulfate replacement by bone. In: Davies JE, editor. Bone engineering. Toronto: Em2 Inc.; 2000. p. 332–44.

    Google Scholar 

  46. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol. 1980;106:405–9.

    Article  Google Scholar 

  47. Peltier LF. The use of plaster of paris to fill large defects in bone. Am J Surg. 1959;97:311–5.

    Article  Google Scholar 

  48. Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE. Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res. 1996;333:245–51.

    Article  Google Scholar 

  49. Miclau T, Edin ML, Lester GE, Lindsey RW, Dahners LE. Bone toxicity of locally applied aminoglycosides. J Orthop Trauma. 1995;9:401–6.

    Article  Google Scholar 

  50. Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R. Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res. 2005;38:1463–73.

    Article  Google Scholar 

  51. Harwood PJ, Newman JB, Michael ALR. An update on fracture healing and non-union. Orthop Trauma. 2010;24:9–23.

    Article  Google Scholar 

  52. AI-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87:107–18.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Telemedicine and Advanced Technology Research Center (TARC) at the U.S. Army Medical Research and Materiel Command (USAMRMC) through award W18XWH-09-1-05796 and by the BAM Laboratories at the University of Memphis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Bumgardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doty, H.A., Leedy, M.R., Courtney, H.S. et al. Composite chitosan and calcium sulfate scaffold for dual delivery of vancomycin and recombinant human bone morphogenetic protein-2. J Mater Sci: Mater Med 25, 1449–1459 (2014). https://doi.org/10.1007/s10856-014-5167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5167-7

Keywords

Navigation