Skip to main content
Log in

Polyethylene wear particles induce TLR 2 upregulation in the synovial layer of mice

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A cellular and receptor mediated response to ultra-high-molecular-weight-polyethylene (UHMWPE) wear particles results in a release of proinflammatory cytokines and induces an inflammatory reaction causing osteolysis in total joint replacement. This investigation offers insight into the toll-like receptor (TLR) mediated activation by polyethylene wear particles in the synovial layer of mice. We hypothesized that, similar to recent in vitro results, UHMWPE particles lead to an upregulation of TLR 1 and 2 and TLR 4 in vivo in the synovial tissue of mice as well. Therefore, UHMWPE particles were generated in a common knee simulator according to the ISO standard, separated by acid digestion and determined by scanning electron microscopy. Endotoxin was removed using a method based on ultracentrifugation. A particle suspension (50 μl; 0.1 vol./vol.%) was injected into the left knee joint of female Balb/c mice (n = 8). In a control group, phosphate-buffered saline was injected into the left knee of Balb/c mice (n = 8). The mice were sacrificed after 7 days. Immunohistochemical staining was performed with TLR 1, 2 and 4 polyclonal antibodies for Balb/c mice and evaluated by light microscopy. The particle-stimulated group showed a thickened synovial layer, an increased cellular infiltration and a TLR 2-upregulation in the synovial layer compared to the control group. An increased expression of TLR 1 and TLR 4 could not be demonstrated. These results indicate a mainly TLR 2-induced inflammation to polyethylene wear debris in the synovial layer of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res. 2007;454:251–61. doi:10.1097/01.blo.0000238813.95035.1b.

    Article  Google Scholar 

  2. Holt G, Murnaghan C, Reilly J, Meek RM. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240–52. doi:10.1097/BLO.0b013e31804b4147.

    Google Scholar 

  3. Asano T, Akagi M, Clarke IC, Masuda S, Ishii T, Nakamura T. Dose effects of cross-linking polyethylene for total knee arthroplasty on wear performance and mechanical properties. J Biomed Mater Res B Appl Biomater. 2007;83(2):615–22. doi:10.1002/jbm.b.30835.

    Article  Google Scholar 

  4. Toumbis CA, Kronick JL, Wooley PH, Nasser S. Total joint arthroplasty and the immune response. Semin Arthritis Rheum. 1997;27(1):44–7.

    Article  Google Scholar 

  5. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53(5):490–7.

    Article  Google Scholar 

  6. Fisher J, McEwen HM, Tipper JL, Galvin AL, Ingram J, Kamali A, et al. Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop Relat Res. 2004;428:114–9.

    Article  Google Scholar 

  7. Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S, Paget D, et al. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol. 2009;47(2–3):175–84. doi:10.1016/j.molimm.2009.09.023.

    Article  Google Scholar 

  8. Hao HN, Zheng B, Nasser S, Ren W, Latteier M, Wooley P, et al. The roles of monocytic heat shock protein 60 and Toll-like receptors in the regional inflammation response to wear debris particles. J Biomed Mater Res, Part A. 2010;92(4):1373–81. doi:10.1002/jbm.a.32474.

    Google Scholar 

  9. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol. 2006;117(5):979–87; quiz 88. doi:10.1016/j.jaci.2006.02.023.

    Google Scholar 

  10. Islam AS, Beidelschies MA, Huml A, Greenfield EM. Titanium particles activate toll-like receptor 4 independently of lipid rafts in RAW264.7 murine macrophages. J Orthop Res Off Publ Orthop Res Soc. 2011;29(2):211–7. doi:10.1002/jor.21199.

    Article  Google Scholar 

  11. Takagi M, Tamaki Y, Hasegawa H, Takakubo Y, Konttinen L, Tiainen VM, et al. Toll-like receptors in the interface membrane around loosening total hip replacement implants. J Biomed Mater Res, Part A. 2007;81(4):1017–26. doi:10.1002/jbm.a.31235.

    Article  Google Scholar 

  12. Paulus A, Schröder C, Sievers B, Frenzel J, Jansson V, Utzschneider S. Evaluation of different methods to eliminate adherent endotoxin of polyethylene wear particles. Wear Int J Sci Technol Frict Lubr Wear. 2012;295:319–25.

    Google Scholar 

  13. 14243 ISOI. Implants for surgery—wear of total knee-joint-prostheses—part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for tests. Geneva: International Standard Organization; 2002.

  14. Niedzwiecki S, Klapperich C, Short J, Jani S, Ries M, Pruitt L. Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage. J Biomed Mater Res. 2001;56(2):245–9.

    Article  Google Scholar 

  15. 17853. IOfSI. Wear of implant particles—polymer and metal wear particles—isolation, characterization and quantification. Geneva: International Organization for Standardization; 2008.

  16. Zysk SP, Gebhard HH, Pellengahr C, Refior HJ, Plitz W, Messmer K, Veihelmann A. Inflammatory responses to wear particles in vivo: a novel model in the murine knee joint. Orthopade. 2003;32(4):305–11.

    Article  Google Scholar 

  17. Bauer TW. Particles and periimplant bone resorption. Clin Orthop Relat Res. 2002;405:138–43.

    Article  Google Scholar 

  18. Catelas I, Wimmer MA, Utzschneider S. Polyethylene and metal wear particles: characteristics and biological effects. Semin Immunopathol. 2011;33(3):257–71. doi:10.1007/s00281-011-0242-3.

    Article  Google Scholar 

  19. Galvin A, Kang L, Tipper J, Stone M, Ingham E, Jin Z, et al. Wear of crosslinked polyethylene under different tribological conditions. J Mater Sci Mater Med. 2006;17(3):235–43. doi:10.1007/s10856-006-7309-z.

    Article  Google Scholar 

  20. Wang A, Essner A, Schmidig G. The effects of lubricant composition on in vitro wear testing of polymeric acetabular components. J Biomed Mater Res B Appl Biomater. 2004;68(1):45–52. doi:10.1002/jbm.b.10077.

    Article  Google Scholar 

  21. Schwenke T, Kaddick C, Schneider E, Wimmer MA, International Standards O. Fluid composition impacts standardized testing protocols in ultrahigh molecular weight polyethylene knee wear testing. Proc Inst Mech Eng Part H J Eng Med. 2005;219(6):457–64.

  22. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19(24):2297–302.

    Article  Google Scholar 

  23. Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E. Comparison of the response of primary murine peritoneal macrophages and the U937 human histiocytic cell line to challenge with in vitro generated clinically relevant UHMWPE particles. Bio-Med Mater Eng. 2000;10(3–4):229–40.

    Google Scholar 

  24. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Macrophage/particle interactions: effect of size, composition and surface area. J Biomed Mater Res. 1994;28(1):81–90. doi:10.1002/jbm.820280111.

    Article  Google Scholar 

  25. Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis. 2009;67(2):182–8.

    Google Scholar 

  26. Zysk SP, Gebhard H, Plitz W, Buchhorn GH, Sprecher CM, Jansson V, et al. Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res B Appl Biomater. 2004;71(1):108–15. doi:10.1002/jbm.b.30075.

    Article  Google Scholar 

  27. Zysk SP, Gebhard HH, Kalteis T, Schmitt-Sody M, Jansson V, Messmer K, et al. Particles of all sizes provoke inflammatory responses in vivo. Clin Orthop Relat Res. 2005;433:258–64.

    Article  Google Scholar 

  28. Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O, Jansson V. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater. 2010;6(11):4296–304. doi:10.1016/j.actbio.2010.06.002 Erratum Acta Biomaterialia. 2012;8(3):1396-8.

    Article  Google Scholar 

  29. Lorber V, Paulus AC, Buschmann A, Schmitt B, Grupp TM, Jansson V, Utzschneider S. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo. J Mater Sci Mater Med. 2013 Sep 26. [Epub ahead of print].

  30. Maitra R, Clement CC, Crisi GM, Cobelli N, Santambrogio L. Immunogenecity of modified alkane polymers is mediated through TLR1/2 activation. PLoS ONE. 2008;3(6):e2438. doi:10.1371/journal.pone.0002438.

    Article  Google Scholar 

  31. Greenfield EM, Beidelschies MA, Tatro JM, Goldberg VM, Hise AG. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors. J Biol Chem. 2010;285(42):32378–84. doi:10.1074/jbc.M110.136895.

    Article  Google Scholar 

  32. von Knoch M, Sprecher C, Barden B, Saxler G, Loer F, Wimmer M. Size and shape of commercially available polyethylene particles for in vitro and in vivo-experiments. Z Orthop Ihre Grenzgeb. 2004;142(3):366–70. doi:10.1055/s-2004-822589.

    Article  Google Scholar 

  33. Deininger S, Traub S, Aichele D, Rupp T, Baris T, Moller HM, et al. Presentation of lipoteichoic acid potentiates its inflammatory activity. Immunobiology. 2008;213(6):519–29. doi:10.1016/j.imbio.2008.01.001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors declare, that this study was supported by the private foundation for medical research “Dr.-Auguste-Schaedel-Dantscher”. No further funds or financial services were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Paulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulus, A.C., Frenzel, J., Ficklscherer, A. et al. Polyethylene wear particles induce TLR 2 upregulation in the synovial layer of mice. J Mater Sci: Mater Med 25, 507–513 (2014). https://doi.org/10.1007/s10856-013-5095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5095-y

Keywords

Navigation