Skip to main content

Advertisement

Log in

NiTi superelastic orthodontic archwires with polyamide coating

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Twenty orthodontic archwires with 55.2 % Ni and 44.8 % Ti (% weight) were subjected to a dipping treatment to coat the NiTi surface by a polyamide polymer. It has been selected a Polyamide 11 due to its remarkable long lasting performance. The transformation temperatures as well as the transformation stresses of the NiTi alloy were determined in order to know whether the coating process can alter its properties. The adhesive wear tests have been demonstrated that the wear rates as well as the dynamic friction coefficients μ of polymer coated wires are much lower than metallic wires. The corrosion studies have shown that the use of this polymer, as coating, seals the NiTi surface to prevent corrosion and the release of nickel ions. The average decrease of Ni ions release due to this coating is around 85 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreasen GF, Morrow RE. Laboratory and clinical analysis of Nitinol wire. Am J Orthod. 1978;73:142–9.

    Article  Google Scholar 

  2. Andreasen GF. A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31 and 45°C. Am J Orthod. 1989;78:528–36.

    Article  Google Scholar 

  3. Abalos C, Paúl A, Mendoza A, Solano E, Gil FJ. Influence of topographical features on the fluoride corrosion of Ni–Ti orthodontic archwires. J Mater Sci Mat Med. 2011;22:2813–21.

    Article  Google Scholar 

  4. Miura F, Mogi M, Ohura Y, Karibe M. The superelastic japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop. 1988;94:89–96.

    Article  Google Scholar 

  5. Burstone CJ, Qin B, Morton JY. NiTi archwire a new orthodontic alloy. Am J Orthod. 1985;87:445–52.

    Article  Google Scholar 

  6. Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontics wires. Am J Orthod Dentofac Orthop. 2005;127:662–9.

    Article  Google Scholar 

  7. Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J. Degradation in performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0 % acidulated phosphate fluoride solution. Angle Orthod. 2004;74:487–95.

    Google Scholar 

  8. Yokohama K, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai J. Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions. Biomaterials. 2005;26:101–8.

    Article  Google Scholar 

  9. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontic wires. Biomaterials. 2004;25:4535–42.

    Article  Google Scholar 

  10. Ogawa T, Yokoyama K, Asaoka K, Sakai J. Hydrogen absorption behavior of beta-titanium alloy in acid fluoride solutions. Biomaterials. 2004;25:2419–25.

    Article  Google Scholar 

  11. Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagumo M. Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials. 2003;24:2113–20.

    Article  Google Scholar 

  12. House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances- should we care? Am J Orthod Dentofac Orthop. 2008;133:584–92.

    Article  Google Scholar 

  13. McKay GC, Macnair R, MacDonald C, Grant MH. Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials. 1996;17:1339–44.

    Article  Google Scholar 

  14. Kerosuo H, Kullaa A, Kerosuo E, Kanerva L, Hensten-Petterson A. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. Am J Orthod Dentofac Orthop. 1996;109:148–54.

    Article  Google Scholar 

  15. Berger-Gorbet M, Broxup B, Rivard C. Yahia L’H. Biocompatibility testing of Ni–Ti screw using immuno histochemistry on sections containing metallic implants. J Biomed Mater Res. 1996;32:243–8.

    Article  Google Scholar 

  16. Bass JK, Fine H, Cisnero CJ. Nickel hypersensitivity in the prosthodontics patient. Am J Orthod Dentofac Orthop. 1993;103:280–5.

    Article  Google Scholar 

  17. Grimsdottir MR, Hensten-Pettersen A, Kulmann A. Proliferation of nickel sensitive human lymphocytes by corrosion products of orthodontic appliances. Biomaterials. 1994;15:1157–60.

    Article  Google Scholar 

  18. Villermaux F, Tabrizian M, Yahia L, Czeremuszkin G. Piron DL Corrosion resistance improvement of NiTi osteosynthesis staples by plasma polymerized tetrafluoroethylene coating. Biomed Mater Eng. 1996;6(4):241–54.

    Google Scholar 

  19. Yang MR, Wu SK. DC plasma-polymerized hexamethyldisilazane Coatings of an equiatomic NiTi shape memory alloy. Surf Coat Technol. 2000;127(2–3):273–80.

    Article  Google Scholar 

  20. Trigwell S, De S, Sharma R, Mazumder MK, Mehta JL. Structural evaluation of radially expandable cardiovascular stents encased in a polyurethane film. J Biomed Mater Res B. 2006;76B(2):241–50.

    Article  Google Scholar 

  21. Mazumder MM, De S, Trigwell S, Ali N, Mazumder MK, Metha JL. Corrosion resistance of polyurethane-coated nitinol cardiovascular stents. J Biomater Sci Polym Ed. 2003;14(12):1351–62.

    Article  Google Scholar 

  22. Tepe G, Schmehl J, Wendel HP, Scaffner S, Heller S, Gianotti M, Clausen CD, Duda SH. Reduced thrombogenicity of nitinol stents-in vitro evaluatiion of different surface modifications and coatings. Biomaterials. 2006;27(4):643–50.

    Article  Google Scholar 

  23. Arciniegas M, Peña J, Manero JM, Paniagua JC, Gil FJ. Quantum parameters for guiding the design of Ti alloys with shape memory and/or low elastic modulus. Phil Mag. 2008;88:2529–48.

    Article  Google Scholar 

  24. Arciniegas M, Manero JM, Peña J, Gil FJ, Planell JA. Study of new multifunctional shape memory and low elastic modulus Ni-free Ti alloys. Mater Sci Eng A. 2008;39:742–51.

    Google Scholar 

  25. Gurgel JA, Pinzan-Vercelino RM, Powers J. Mechanical properties of beta-titanium wires. Angle Orthod. 2011;81:471–3.

    Article  Google Scholar 

  26. European Parliament and council directive 94/27/EC of 30 June 1994, Off J Eur Commun. 1994; L188: 1–2.

  27. Commission directive 2004/96/EC of 27 September 2004, Off J Eur Commun. L301 (2004):51–52.

  28. Setcos JC, Babaei-Mahamani A, Di Silvio L, Mijör MA, Wilson NHF. The safety of nickel containing dental alloys. Dent Mater. 2006;22(12):1163–8.

    Article  Google Scholar 

  29. Wiltshire WA, Noble J. Allergies to dental materials. Vital Autumn. 2007;27:39.

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the Spanish government for their financial support through project CYCIT MAT2012-30706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, L.A., de Cabañes, A.G., Manero, J.M. et al. NiTi superelastic orthodontic archwires with polyamide coating. J Mater Sci: Mater Med 25, 555–560 (2014). https://doi.org/10.1007/s10856-013-5070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5070-7

Keywords

Navigation