Skip to main content
Log in

DSC and three-point bending test for the study of the thermo-mechanical history of NiTi and NiTi-based orthodontic archwires

The material point of view

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is a known fact that the NiTi orthodontic archwire is one of the first and most diffuse biomedical applications of shape memory alloys. In the last years, none deep study about orthodontic archwires has been conducted from the material point of view. In general, the clinical response is the principal aspect that has been investigated for this application. Nonetheless, the accurate mechanical and physical characterization of the archwires can be very important to add new developments to this biomedical product and to give a substantial contribution to the indispensable evolution that is crucial for better clinic results. In fact, the principal aspect that it is needed for further improvements is the study of the optimal force that does not cause damage to the surrounding tissues. According to this statement, a deep study about the thermo-mechanical characterization of several pseudoelastic commercial archwires used in the straight-wire low-friction techniques is presented. In detail, flexural mechanical tests in the three-point-bending configuration were conducted to assess the archwires unloading force, while differential scanning calorimetry was used to study the phase transition temperatures, and the thermo-mechanical history of each specimen. Both NiTi and NiTiCu commercial archwires were tested, and different geometries were considered. For all the archwires, an excellent repeatability of the results has been found. This series of characterizations provides a complete view of the thermo-mechanical properties of the material, and therefore it shows the possibility to modulate the functional properties developed by the device as a function of the biological field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schwarz AM. Tissue changes incidental to orthodontic tooth movement. Int J Ortho Oral Surg Radiog. 1932;18:331–52.

    Article  Google Scholar 

  2. Reitan K. Clinical and histological observation on tooth movement during and after orthodontic treatment. Am J Orthod. 1967;53:721–45.

    Article  CAS  Google Scholar 

  3. Ryght P, Bowwling K, Howlandsdal L, Williams S. Activation of vascular system: a main mediator of periodontal fiber remodelling in orthodontic treatment. Am J Orthod. 1986;89:453–68.

    Article  Google Scholar 

  4. Proffit WR. Contemporary orthodontics. St. Luis: Mosby-Year Book; 1999.

    Google Scholar 

  5. Proffit WR. Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod. 1978;48:175–86.

    CAS  Google Scholar 

  6. Proffit WR. Contemporary orthodontics. St. Luis: Mosby; 1993.

    Google Scholar 

  7. Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A systematic literature review. Angle Orthod. 2003;73:86–92.

    Google Scholar 

  8. Duerig TW, Melton KN. Engineering aspects of shape memory alloys. Oxford: Butterworth-Heinemann; 1990.

    Google Scholar 

  9. Funakubo H. Shape memory alloys. New York: Gordon & Breach Science Publishers; 1984.

    Google Scholar 

  10. Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  11. Machado LG, Savi MA. Medical applications of shape memory alloys. Braz J Med. Biol Res. 2003;36:683–91.

    CAS  Google Scholar 

  12. Morgan NB. Medical shape memory alloy applications—the market and its products. Mater Sci Eng A. 2004;378:16–23.

    Article  Google Scholar 

  13. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445–54.

    Article  CAS  Google Scholar 

  14. Petrini L, Migliavacca F. Biomedical applications of shape memory Alloys. J Metall. 2011; 1–15.

  15. Nespoli A, Dallolio V, Stortiero F, Besseghini S, Passaretti F, Villa E. Design and thermo-mechanical analysis of a new NiTi shape memory alloy fixing clip. Mater Sci Eng C. 2014;37:171–6.

    Article  CAS  Google Scholar 

  16. Es-Souni M, Es-Souni M, Brandies HF. On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys: NiTi42 and NiTi42Cu7. Biomater. 2001;22:2153–61.

    Article  CAS  Google Scholar 

  17. David A, Lobner D. In vitro cytotoxicity of orthodontic archwires in cortical cell cultures. Eur J Orthod. 2004;26:421–6.

    Article  Google Scholar 

  18. Gil FJ, Solano E, Oena J, Engel E, Mendoza A, Planell JA. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J Mater Sci Mater Med. 2004;15:1181–5.

    Article  CAS  Google Scholar 

  19. Gil FJ, Planell JA. Effect of copper addition on the superelastic behavior of Ni–Ti shape memory alloys for orthodontic applications. J Biomed Mater Res. 1999;48:682–8.

    Article  CAS  Google Scholar 

  20. Nishida M, Wayman CM, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metal Trans A. 1986;17A:1505–15.

    Article  CAS  Google Scholar 

  21. Matsumoto H. Transformation behaviour of NiTi in relation to thermal cycling and deformation. Phys B. 1993;190:115–20.

    Article  CAS  Google Scholar 

  22. Zheng Y, Jiang F, Li L, Yang H, Liu Y. Effect of ageing treatment on the transformation behavior of Ti–50.9 at.% Ni alloy. Acta Mater. 2008;56:736–45.

    Article  CAS  Google Scholar 

  23. Il’czuk J, Morawiec H. Effect of dislocation inhomogeneity on the martensitic transformation in NiTi alloys. Metal Sci Heat Treat. 1998;40:3–4.

    Article  Google Scholar 

  24. Huang X, Liu Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Mater. 2001;45:153–60.

    Article  CAS  Google Scholar 

  25. Nespoli A, Besseghini S. A complete thermo-mechanical study of a NiTiCu shape memory alloy wire. J Therm Anal Calorim. 2011;103:821–6.

    Article  CAS  Google Scholar 

  26. Karagoz Z, Aksu Canbay C. Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2013;14:1069–74.

    Article  Google Scholar 

  27. Kök M, Aydoğdu Y. Effect of composition on the thermal behavior of NiMnGa alloys. J Therm Anal Calorim. 2013;113:859–63.

    Article  Google Scholar 

  28. Nespoli A, Villa E, Besseghini S. Thermo-mechanical properties of snake-like NiTi wires and their use in miniature devices. J Therm Anal Calorim. 2012;109:39–47.

    Article  CAS  Google Scholar 

  29. Nespoli A, Villa E, Besseghini S. Characterization of the martensitic transformation in Ni50–xTi50Cux alloys through pure thermal measurements. J Alloys Comp. 2011;509:644–7.

    Article  CAS  Google Scholar 

  30. Nespoli A, Passaretti F, Villa E. Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys. Intermetal. 2013;32:394–400.

    Article  CAS  Google Scholar 

  31. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progr Mater Sci. 2005;50:511–678.

    Article  CAS  Google Scholar 

  32. Nespoli A, Passaretti F, Stortiero F, Villa E. Temperature-modulated differential scanning calorimetry for the study of reversing and nonreversing heat flow of shape memory alloys. J Therm Anal Calorim. 2014;116:771–7.

    Article  CAS  Google Scholar 

  33. Zheng Y, Jiang F, Li L, Yang H, Liu Y. Effect of ageing treatment on the transformation behavior of Ti–50.9 at.% Ni alloy. Acta Mater. 2008;56:736–45.

    Article  CAS  Google Scholar 

  34. Khalil Allafi J, Ren X, Eggeler G. The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater. 2002;50:793–803.

    Article  CAS  Google Scholar 

  35. Su PC, Wu SK. The four-step multiple stage transformation in deformed and annealed Ti49Ni51 shape memory alloy. Acta Mater. 2004;52:1117–22.

    Article  CAS  Google Scholar 

  36. Oltjen JM, et al. Stiffness-deflection behavior of selected orthodontic wires. Angle Orthodontist. 1997;67(3):209–18.

    CAS  Google Scholar 

  37. Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Katsura H. Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop. 1999;115:390–5.

    Article  CAS  Google Scholar 

  38. Gurgel JA, Kerr S, Powers JM, LeCrone V. Force-deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2001;120:378–82.

    Article  CAS  Google Scholar 

  39. Mallory DC, English JD, Powers JM, Brantley WA, Bussa HI. Force-deflection comparison of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2004;126:110–2.

    Article  Google Scholar 

  40. Berger J, Waram T. Force levels of nickel titanium initial archwires. J Clinic Orthod. 2007;41:286–92.

    Google Scholar 

  41. Muguruma T, Iijima M, Yuasa T, Okayama M, Mizoguchi I. Bending and torsional properties of commercial nickel-titanium orthodontic wires. Dent J Health Sci Univ Hokkaido. 2007;26:1–7.

    CAS  Google Scholar 

  42. Bartzela TN, Senn C, Wichelhaus A. Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod. 2007;77:991–8.

    Article  Google Scholar 

  43. Elayyan F, Silikas N, Bearn D. Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod. 2008;30:661–7.

    Article  Google Scholar 

  44. Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G. Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod. 2012;82:507–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Nespoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nespoli, A., Villa, E., Bergo, L. et al. DSC and three-point bending test for the study of the thermo-mechanical history of NiTi and NiTi-based orthodontic archwires. J Therm Anal Calorim 120, 1129–1138 (2015). https://doi.org/10.1007/s10973-015-4441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4441-3

Keywords

Navigation