Skip to main content

Advertisement

Log in

Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Due to their mechanical properties, there has been growing interest in poly-ether-ether-ketone (PEEK) and its composites as bearing material in total and unicompartmental knee arthroplasty. The aim of this study was to analyze the biological activity of wear particles of two different (pitch and PAN) carbon-fiber-reinforced- (CFR-) PEEK varieties in comparison to ultra-high-molecular-weight-polyethylene (UHMWPE) in vivo. The authors hypothesized no difference between the used biomaterials. Wear particle suspensions of the particulate biomaterials were injected into knee joints of Balb/c mice, which were sacrificed after seven days. The cytokine expression (IL-1β, IL-6, TNF-α) was analyzed immunohistochemically in the synovial layer, the adjacent bone marrow and the articular cartilage. Especially in the bone marrow of the two CFR-PEEK varieties there were increased cytokine expressions compared to the control and UHMWPE group. Furthermore, in the articular cartilage the CFR-PEEK pitch group showed an enhanced cytokine expression, which could be a negative predictor for the use in unicondylar knee systems. As these data suggest an increased proinflammatory potential of CFR-PEEK and its composites in vivo, the initial hypothesis had to be refuted. Summarizing these results, CFR-PEEK seems not to be an attractive alternative to UHMWPE as a bearing material, especially in unicompartmental knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horwitz MD, Awan S, Chatoo MB, Stott DJ, Powles DP. An 8- to 10-year review of the Rotaglide total knee replacement. Int Orthop. 2009;33(1):111–5. doi:10.1007/s00264-007-0492-9.

    Article  Google Scholar 

  2. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res. 2007;454:251–61. doi:10.1097/01.blo.0000238813.95035.1b.

    Article  Google Scholar 

  3. Holt G, Murnaghan C, Reilly J, Meek RM. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240–52. doi:10.1097/BLO.0b013e31804b4147.

    Google Scholar 

  4. Chiu R, Ma T, Smith RL, Goodman SB. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J Biomed Mater Res A. 2009;89(1):242–7. doi:10.1002/jbm.a.32001.

    Google Scholar 

  5. Wright TM. Polyethylene in knee arthroplasty: what is the future? Clin Orthop Relat Res. 2005;440:141–8.

    Article  Google Scholar 

  6. Oral E, Wannomae KK, Rowell SL, Muratoglu OK. Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials. 2007;28(35):5225–37. doi:10.1016/j.biomaterials.2007.08.025.

    Article  Google Scholar 

  7. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20(1):163–70. doi:10.1007/s10856-008-3558-3.

    Article  Google Scholar 

  8. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE, Jones E. Pre-clinical studies to validate the MITCH PCR Cup: a flexible and anatomically shaped acetabular component with novel bearing characteristics. J Mater Sci Mater Med. 2008;19(4):1729–36. doi:10.1007/s10856-007-3256-6.

    Article  Google Scholar 

  9. Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009;9(3):263–7. doi:10.1016/j.spinee.2008.08.002.

    Article  Google Scholar 

  10. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27(3):324–34. doi:10.1016/j.biomaterials.2005.07.011.

    Article  Google Scholar 

  11. Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O, et al. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater. 2010;6(11):4296–304. doi:10.1016/j.actbio.2010.06.002.

    Article  Google Scholar 

  12. Grupp TM, Utzschneider S, Schroder C, Schwiesau J, Fritz B, Maas A, et al. Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater. 2010;6(9):3601–10. doi:10.1016/j.actbio.2010.04.003.

    Article  Google Scholar 

  13. 14243 ISOI. Implants for surgery—wear of total knee-joint-prostheses—part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for tests. Geneva: International Standard Organization. 2002.

  14. Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res. 1998;41(4):600–7.

    Article  Google Scholar 

  15. Matthews JB, Besong AA, Green TR, Stone MH, Wroblewski BM, Fisher J, et al. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res. 2000;52(2):296–307.

    Article  Google Scholar 

  16. Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA, Glant TT. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone and Joint Surg Am. 2001;83A(2):201–11.

    Google Scholar 

  17. Yao J, Cs-Szabo G, Jacobs JJ, Kuettner KE, Glant TT. Suppression of osteoblast function by titanium particles. J Bone Joint Surg Am. 1997;79(1):107–12.

    Google Scholar 

  18. 10993-5 ISOI. Biological evaluation of mediacal devices—part 5: tests for in vitro cytotoxity. Geneva: International Standard Organization. 1999.

  19. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53(5):490–7.

    Article  Google Scholar 

  20. al-Saffar N, Revell PA. Pathology of the bone-implant interfaces. J Long Term Eff Med Implants. 1999;9(4):319–47.

    Google Scholar 

  21. Bauer TW. Particles and periimplant bone resorption. Clin Orthop Relat Res. 2002;405:138–43.

    Article  Google Scholar 

  22. Zysk SP, Gebhard H, Plitz W, Buchhorn GH, Sprecher CM, Jansson V, et al. Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res B. 2004;71(1):108–15. doi:10.1002/jbm.b.30075.

    Article  Google Scholar 

  23. Zysk SP, Gebhard HH, Kalteis T, Schmitt-Sody M, Jansson V, Messmer K, et al. Particles of all sizes provoke inflammatory responses in vivo. Clin Orthop Relat Res. 2005;433:258–64.

    Article  Google Scholar 

  24. Illgen RL 2nd, Bauer LM, Hotujec BT, Kolpin SE, Bakhtiar A, Forsythe TM. Highly crosslinked vs conventional polyethylene particles: relative in vivo inflammatory response. J Arthroplasty. 2009;24(1):117–24. doi:10.1016/j.arth.2008.01.134.

    Article  Google Scholar 

  25. Ma T, Huang Z, Ren PG, McCally R, Lindsey D, Smith RL, et al. An in vivo murine model of continuous intramedullary infusion of polyethylene particles. Biomaterials. 2008;29(27):3738–42. doi:10.1016/j.biomaterials.2008.05.031.

    Article  Google Scholar 

  26. Ren WP, Markel DC, Zhang R, Peng X, Wu B, Monica H, et al. Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials. 2006;27(30):5161–9. doi:10.1016/j.biomaterials.2006.04.004.

    Article  Google Scholar 

  27. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23(2):517–26.

    Article  Google Scholar 

  28. Bi Y, Collier TO, Goldberg VM, Anderson JM, Greenfield EM. Adherent endotoxin mediates biological responses of titanium particles without stimulating their phagocytosis. J Orthop Res. 2002;20(4):696–703. doi:10.1016/S0736-0266(01)00176-0.

    Article  Google Scholar 

  29. Cho DR, Shanbhag AS, Hong CY, Baran GR, Goldring SR. The role of adsorbed endotoxin in particle-induced stimulation of cytokine release. J Orthop Res. 2002;20(4):704–13. doi:10.1016/S0736-0266(01)00179-6.

    Article  Google Scholar 

  30. Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S, et al. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res B. 2003;67(2):758–64. doi:10.1002/jbm.b.10068.

    Article  Google Scholar 

  31. Morrison C, Macnair R, MacDonald C, Wykman A, Goldie I, Grant MH. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16(13):987–92.

    Article  Google Scholar 

  32. Rivard CH, Rhalmi S, Coillard C. In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res. 2002;62(4):488–98. doi:10.1002/jbm.10159.

    Article  Google Scholar 

  33. Jockisch KA, Brown SA, Bauer TW, Merritt K. Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res. 1992;26(2):133–46. doi:10.1002/jbm.820260202.

    Article  Google Scholar 

  34. Chang CH, Fang HW, Ho YC, Huang HT. Chondrocyte acting as phagocyte to internalize polyethylene wear particles and leads to the elevations of osteoarthritis associated NO and PGE2. Biochem Biophys Res Commun. 2008;369(3):884–8. doi:10.1016/j.bbrc.2008.02.123.

    Article  Google Scholar 

  35. Schmalzried TP, Campbell P, Schmitt AK, Brown IC, Amstutz HC. Shapes and dimensional characteristics of polyethylene wear particles generated in vivo by total knee replacements compared to total hip replacements. J Biomed Mater Res. 1997;38(3):203–10.

    Article  Google Scholar 

  36. Libouban H, Massin P, Gaudin C, Mercier P, Basle MF, Chappard D. Migration of wear debris of polyethylene depends on bone microarchitecture. J Biomed Mater Res B. 2009;90(2):730–7. doi:10.1002/jbm.b.31341.

    Article  Google Scholar 

  37. Massin P, Chappard D, Flautre B, Hardouin P. Migration of polyethylene particles around nonloosened cemented femoral components from a total hip arthroplasty-an autopsy study. J Biomed Mater Res B. 2004;69(2):205–15. doi:10.1002/jbm.b.30001.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Aesculap AG, Tuttlingen, Germany. The authors would like to thank Mark Yeoman PhD from Continuum Blue Ltd. for the generation of sterile particles in a cryo-pulverisation process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Utzschneider.

Additional information

V. Lorber and A. C. Paulus have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorber, V., Paulus, A.C., Buschmann, A. et al. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo. J Mater Sci: Mater Med 25, 141–149 (2014). https://doi.org/10.1007/s10856-013-5037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5037-8

Keywords

Navigation