Skip to main content
Log in

Preparation and characterization of PEG–PPG–PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, polymer blends between PEG–PPG–PEG copolymer mixtures and pregelatinized starch at various compositions ranging from 0 to 3 % by weight were prepared and evaluated for potential use as novel resorbable bone hemostatic wax. It was found that the prepared samples had sufficient smearability for use as a bone wax. An addition of pregelatinized starch increased the hardness, smoothness and consistency of the texture while decreasing the adherence to glove. Thermal analysis indicated that the heat of fusion slightly decreased with increasing pregelatinized starch content. Compressive stiffness tended to decrease with increasing starch content for concentrations lower than 20 %, but re-increased at higher starch levels. In contrast, adherence deformation increased initially, but then decreased with increasing starch content. This behavior was related to the dependence of softening or reinforcing effect on the level of starch concentration in the samples. Adherence load and energy decreased with the addition of pregelatinized starch implying the decrease in adhesiveness of the samples. Furthermore, increasing the pregelatized starch amount also increased the liquid sealing duration of the samples at both 23 and 37 °C. Cytotoxicity tests against osteoblasts using a MTT assay revealed that the all the prepared samples and their raw materials did not show any cytotoxic potential. Formulations containing pregelatinized starch content between 20 and 30 % were found to show optimized performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schonauer C, Tessitore E, Barbagallo G, Albanese V, Moraci A. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13:S89–96.

    Article  Google Scholar 

  2. Gupta G, Prestigiacomo CJ. From sealing wax to bone wax: predecessors to Horsley’s development. Neurosurg Focus. 2007;23:1–4.

    Article  Google Scholar 

  3. Gibbs L, Kakis A, Weinstein P, Conte JE Jr. Bone wax as a risk factor for surgical-site infection following neurospinal surgery. Infect Control Hosp Epidemiol. 2004;25:346–8.

    Article  Google Scholar 

  4. Sudmann B, Bang G, Sudmann E. Histologically verified bone wax (beeswax) granuloma after median sternotomy in 17 of 18 autopsy cases. Pathology. 2006;38:138–41.

    Article  Google Scholar 

  5. Geary JR, Frantz VK. New absorbable hemostatic bone wax. Annals Surg. 1950;132(6):1128–37.

    Article  CAS  Google Scholar 

  6. Ekholm M, Salo A, Syrjanen S, Laine P, Lindqvist C. Biocompatibility of solid poly(ortho ester). J Mater Sci Mater Med. 1997;8:265–9.

    Article  CAS  Google Scholar 

  7. Orgill DP, Ehret FW, Regan JF, Glowacki J, Mulliken JB. Polyethylene glycol/microfibrillar collagen composite as a new resorbable hemostatic bone wax. J Biomed Mater Res. 1998;39(3):358–63.

    Article  CAS  Google Scholar 

  8. Hoffmann B, Volkmer E, Kokott A, Weber M, Hamisch S, Schieker M, Mutschler W, Ziegler G. A new biodegradable bone wax substitute with the potential to be used as a bone filling material. J Mater Chem. 2007;17:4028–33.

    Article  CAS  Google Scholar 

  9. Magyar CE, Aghaloo TL, Atti E, Tetradis S. Ostene, a new alkylene oxide copolymer bone hemostatic material, does not inhibit bone healing. Neurosurgery. 2008;63:373–8.

    Article  Google Scholar 

  10. Wellisz T, Armstrong JK, Cambridge J, An YH, Wen X, Kang Q, Hill CM, Fisher TC. The effects of a soluble polymer and bone wax on sternal healing in an animal model. Ann Thorac Surg. 2008;85(5):1776–80.

    Article  Google Scholar 

  11. Wellisz T, An YH, Wen X, Kang Q, Hill CM, Armstrong JK. Infection rates and healing using bone wax and a soluble polymer material. Clin Orthop Relat Res. 2008;466(2):481–6.

    Article  Google Scholar 

  12. Lee TC, Chang NK, Su FW, Yang YL, Su TM, Lin YJ, Lin WC, Huang HY. Systemic and local reactions of a water-soluble copolymer bone on a bony defect of rabbit model. Surg Neurol. 2009;72:S75–9.

    Article  Google Scholar 

  13. Vestergaard RF, Jensen H, Vind-Kezunovic S, Jakobsen T, Søballe K, Hasenkam JM. Bone healing after median sternotomy: a comparison of two hemostatic devices. J Cardiothorac Surg. 2010;24(5):117–24.

    Article  Google Scholar 

  14. Suvannapruk W, Thammarakcharoen F, Chokevivat W, Rukskul P, Suwanprateeb J. Evaluation of PEG-PPG-PEG copolymer blends for using as resorbable bone wax. Adv Mater Res. 2013;747:174–7.

    Article  Google Scholar 

  15. Kumarswamy A, Moretti A, Paquette D, Padilla R, Everett E, Nares S. In vivo assessment of osseous wound healing using a novel bone putty containing lidocaine in the surgical management of tooth extractions. Int J Dent. 2012;2012:1–8.

    Article  Google Scholar 

  16. Prziborowski J, Hartrumpf M, Stock UA, Kuehnel RU, Albes JM. Is bonewax safe and does it help? Ann Thorac Surg. 2008;85(3):1002–6.

    Article  Google Scholar 

  17. Vieira AP, Ferreira P, Coelho JFJ, Gil MH. Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. Inter J Biol Macromol. 2008;43:325–32.

    Article  CAS  Google Scholar 

  18. Björk E, Edman P. Characterization of degradable starch microspheres as a nasal delivery system for drugs. Inter J Pharma. 1990;62:187–92.

    Article  Google Scholar 

  19. Salgado AJ, Coutinho OP, Reis RL. Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng. 2004;10:465–74.

    Article  CAS  Google Scholar 

  20. Duarte ARC, Mano JF, Reis RL. Perspectives on: Supercritical fluid technology for 3D tissue engineering scaffold applications. J Bioact Compat Polym. 2009;24:385–400.

    Article  CAS  Google Scholar 

  21. Scott G. ‘Green’ polymers. Polym Degrad Stabil. 2000;68:1–7.

    Article  CAS  Google Scholar 

  22. Wang XL, Yang KK, Wang YZ, Wang DY, Yang Z. Crystallization and morphology of a novel biodegradable polymer system: poly(1,4-dioxanone)/starch blends. Acta Materialia. 2004;52:4899–905.

    Article  CAS  Google Scholar 

  23. Ersoy G, Kaynak MF, Yilmaz O, Rodoplu U, Maltepe F, Gokmen N. Hemostatic effects of microporous polysaccharide hemosphere in a rat model with severe femoral artery bleeding. Adv Ther. 2007;24(3):485–92.

    Article  CAS  Google Scholar 

  24. Wang Y, Xu M, Dong H, Liu Y, Zhao P, Niu W, Xu D, Ji X, Xing C, Lu D, Li Z. Effects of PerClot® on the healing of full-thickness skin wounds in rats. Acta Histochem. 2012;114(4):311–7.

    Article  CAS  Google Scholar 

  25. Björses K, Faxälv L, Montan C, Wildt-Persson K, Fyhr P, Holst J, Lindahl TL. In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis. Acta Biomater. 2011;7(6):2558–65.

    Article  Google Scholar 

  26. Jubril I, Muazu J, Mohammed GT. Effects of phosphate modified and pregelatinized sweet potato starches on disintegrant property of paracetamol tablet formulations. J Appl Pharma Sci. 2012;2:32–6.

    Google Scholar 

  27. Norton RL. a283413 In: Development of a moldable, biodegradable polymeric bone repair material. defense technical information center. 1999. www.dtic.mil/dtic/tr/fulltext/u2/a283413.pdf. Accessed 19 July 2013.

  28. Wellisz TZ, Fisher TC, Armstrong JK, Cambridge J. Random and non-random alkylene oxide polymer alloy compositions. WO 2004/071452 A2, 2004.

  29. Rezaei K, Wang T, Johnson LA. Hydrogenated vegetable oils as candle wax. J Am Oil Chem Soc. 2002;79:1241–7.

    Article  CAS  Google Scholar 

  30. Yao L, Lio JY, Wang T, Jarboe DH. Synthesis and characterization of acetylated and stearylyzed soy wax. J Am Oil Chem Soc. 2013;90:1063–71.

    Article  CAS  Google Scholar 

  31. Liao HT, Wu CS. Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch. Mater Sci Eng A. 2009;515:207–14.

    Article  Google Scholar 

  32. Yu F, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P. Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohyd Polym. 2013;91:253–61.

    Article  CAS  Google Scholar 

  33. Gohil UC, Podczeck F, Turnbull N. Investigations into the use of pregelatinised starch to develop powder-filled hard capsules. Int J Pharm. 2004;285(1–2):51–63.

    Article  CAS  Google Scholar 

  34. Evagelioua V, Richardsona RK, Morris ER. Effect of oxidised starch on high methoxy pectin–sucrose gels formed by rapid quenching. Carbohyd Polym. 2000;42(3):219–32.

    Article  Google Scholar 

  35. Rodriguez-Perez MA, Simoes RD, Roman-Lorza S, Alvarez-Lainez M, Montoya-Mesa C, Constantino CJL, de Saja JA. Foaming of EVA/starch blends: characterization of the structure, physical properties, and biodegradability. Polym Eng Sci. 2012;52(1):62–70.

    Article  CAS  Google Scholar 

  36. Rodríguez-Miranda J, Delgado-Licon E, Hernández-Santos B, Reyes-Jaquez D, AguilarPalazuelos E, Medrano-Roldan H, Navarro-Cortez RO, Castro-Rosas J, Gómez-Aldapa CA. The effect of pregelatinized potato starch on the functional properties of an extruded aquafeed. J Anim Prod Adv. 2012;2(7):335–44.

    Google Scholar 

  37. Schreiber MA, Tieu B. Hemostasis in Operation Iraqi Freedom III. Surgery. 2007;142:S61–6.

    Article  Google Scholar 

  38. Carraway JW, Kent D, Young K, Cole A, Friedman R, Ward KR. Comparison of a new mineral based hemostatic agent to a commercially available granular zeolite agent for hemostasis in a swine model of lethal extremity arterial hemorrhage. Resuscitation. 2008;78:230–5.

    Article  CAS  Google Scholar 

  39. Azevedo HS, Reis RL. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: Reis RL, Román JS, editors. Biodegradable systems in tissue engineering and regenerative medicine. Boca Raton: CRC; 2005. p. 177–201.

    Google Scholar 

  40. Ereth MH, Schaff M, Ericson EF, Wetjen NM, Nuttall GA, Oliver WC Jr. Comparative safety and efficacy of topical hemostatic agents in a rat neurosurgical model. Neurosurgery. 2008;63:369–72.

    Article  Google Scholar 

  41. Fusco S, Borzacchiello A. Netti PA. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym. 2006;21:149–64.

    Article  CAS  Google Scholar 

  42. Cohn D, Sosnik A. Novel reverse thermoresponsive injectable poly(ether carbonate)s. J Mater Sci: Mater Med. 2003;14:175–80.

    Article  CAS  Google Scholar 

  43. Elluru M, Ma H, Hadjiargyrou M, Hsiao BS, Chu B. Synthesis and characterization of biocompatible hydrogel using Pluronics-based block copolymers. Polymer. 2013;54(8):2088–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thaiwah Co.,Ltd, Thailand is thanked for the supply of pregelatinized starch. Cluster and Program Management Office, National Science and Technology Development Agency is acknowledged for financial support. Authors would like to thank Dr. JTH Pearce (MTEC) for help in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Suwanprateeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwanprateeb, J., Suvannapruk, W., Thammarakcharoen, F. et al. Preparation and characterization of PEG–PPG–PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax. J Mater Sci: Mater Med 24, 2881–2888 (2013). https://doi.org/10.1007/s10856-013-5027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5027-x

Keywords

Navigation