Skip to main content
Log in

Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Injectable materials for mini-invasive surgery of cartilage are synthesized and thoroughly studied. The concept of these hybrid materials is based on providing high enough mechanical performances along with a good medium for chondrocytes proliferation. The unusual nanocomposite hydrogels presented herein are based on siloxane derived hydroxypropylmethylcellulose (Si-HPMC) interlinked with mesoporous silica nanofibers. The mandatory homogeneity of the nanocomposites is checked by fluorescent methods, which show that the silica nanofibres dispersion is realized down to nanometric scale, suggesting an efficient immobilization of the silica nanofibres onto the Si-HPMC scaffold. Such dispersion and immobilization are reached thanks to the chemical affinity between the hydrophilic silica nanofibers and the pendant silanolate groups of the Si-HPMC chains. Tuning the amount of nanocharges allows tuning the resulting mechanical features of these injectable biocompatible hybrid hydrogels. hASC stem cells and SW1353 chondrocytic cells viability is checked within the nanocomposite hydrogels up to 3 wt% of silica nanofibers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28:192–202.

    CAS  Google Scholar 

  2. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22.

    Article  CAS  Google Scholar 

  3. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.

    Article  CAS  Google Scholar 

  4. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.

    Article  Google Scholar 

  5. Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–92.

    Article  CAS  Google Scholar 

  6. Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K. Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci. 2010;45:5711–35.

    Article  CAS  Google Scholar 

  7. Richter A, Gerlach G, Arndt K-F. Hydrogels for actuators. In: Wolfbeis OS, editor. Hydrogel sensors and actuators. Berlin: Springer; 2010. p. 221–48.

    Google Scholar 

  8. Choudhury NA, Sampath S, Shukla AK. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci. 2009;2:55–67.

    Article  CAS  Google Scholar 

  9. Khaleque T, Abu-Salih S, Saunders JR, Moussa W. Experimental methods of actuation, characterization and prototyping of hydrogels for BioMEMS/NEMS applications. J Nanosci Nanotechnol. 2011;11:2470–9.

    Article  CAS  Google Scholar 

  10. Hendrickson GR, Andrew Lyon L. Bioresponsive hydrogels for sensing applications. Soft Matter. 2009;5:29–35.

    Article  CAS  Google Scholar 

  11. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.

    Article  CAS  Google Scholar 

  12. Deligkaris K, Tadele TS, Olthuis W, van den Berg A. Hydrogel based devices for biomedical applications. Sens Actuators B. 2010;147:765–74.

    Article  CAS  Google Scholar 

  13. Kobayashi M, Hyu HS. Development and evaluation of polyvinyl alcohol-hydrogels as an artificial articular cartilage for orthopaedic implants. Materials. 2010;3:2753–71.

    Article  CAS  Google Scholar 

  14. Rimmer S. Synthesis of hydrogels for biomedical applications: control of structure and properties. In: Rimmer S, editor. Biomedical hydrogels. Cambridge: Woodhead Publishing in Materials; 2011. p. 51–62.

    Chapter  Google Scholar 

  15. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.

    Article  CAS  Google Scholar 

  16. Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter. 2010;6:2364–71.

    Article  CAS  Google Scholar 

  17. Lindblad Söderqvist M, Sjöberg J, Albertsson A-C, Hartman J. Hydrogels from polysaccharides for biomedical applications. In: Argyropoulos DS, editor. Materials, chemicals, and energy from forest biomass. Washington: American Chemical Society; 2007. p. 153–67.

    Chapter  Google Scholar 

  18. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.

    Article  Google Scholar 

  19. Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications. Materials. 2009;2:353–73.

    Article  CAS  Google Scholar 

  20. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.

    Article  CAS  Google Scholar 

  21. Weiss P, Fatimi A. Injectable composites for bone repair. In: Luigi A, editor. Biomedical composites. Cambridge: Woodhead Publishing Ltd.; 2010.

    Google Scholar 

  22. Nair LS, Laurencin CT, Tandon M. Injectable hydrogels as biomaterials. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing, and applications. Hoboken: Wiley; 2009. p. 179–203.

    Google Scholar 

  23. Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials. 2010;3:1746–67.

    Article  CAS  Google Scholar 

  24. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37:1473–81.

    Article  CAS  Google Scholar 

  25. Lapkowski M, Weiss P, Daculsi G, Dupraz A. Patent 1997 WO A1 9705911. 1995 FR 95-9582.

  26. Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silatedhydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci. 2002;99:215–28.

    Article  CAS  Google Scholar 

  27. Fatimi A, Tassin J-F, Quillard S, Axelos MAV, Weiss P. The rheological properties of silatedhydroxypropyl methylcellulose tissue engineering matrices. Biomaterials. 2008;29:533–43.

    Article  CAS  Google Scholar 

  28. Calvert P. Hydrogels for soft machines. Adv Mater. 2009;21:743–56.

    Article  CAS  Google Scholar 

  29. Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306.

    Article  CAS  Google Scholar 

  30. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  Google Scholar 

  31. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–7.

    Article  CAS  Google Scholar 

  32. Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.

    Article  CAS  Google Scholar 

  33. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  Google Scholar 

  34. Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE. 2011;6:e15978.

    Article  CAS  Google Scholar 

  35. Yang S, Zhao L, Yu C, Zhou X, Tang J, Yuan P, Chen D, Zhao D. On the origin of helical mesostructures. J Am Chem Soc. 2006;128:10460–6.

    Article  CAS  Google Scholar 

  36. Rambaud F, Vallé K, Thibaud S, Julián-López B, Sanchez C. One pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity. Adv Funct Mater. 2009;19:2896–905.

    Article  CAS  Google Scholar 

  37. Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9.

    Article  CAS  Google Scholar 

  38. Weiss P, Vinatier C, Guicheux J, Grimandi G, Daculsi G. A self-setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng Mater. 2004;254–256:1107–10.

    Article  Google Scholar 

  39. Bourges X, Schmitt M, Amouriq Y, Daculsi G, Legeay G, Weiss P. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies. J Biomat Sci Polym E. 2001;12:573–9.

    Article  CAS  Google Scholar 

  40. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux JA. Silanized hydroxypropyl methylcellulose hydrogel for the threedimensional culture of chondrocytes. Biomaterials. 2005;26:6643–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank warmly Dr. P. Bertoncini for help with epi-fluorescence experiences and Dr. C. Vinatier for help with SW1353 cell line and biocompatibility experiences. This work was funded by the Région Pays de la Loire within the BIOREGOS 2 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Le Bideau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchtová, N., Réthoré, G., Boyer, C. et al. Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. J Mater Sci: Mater Med 24, 1875–1884 (2013). https://doi.org/10.1007/s10856-013-4951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4951-0

Keywords

Navigation