Skip to main content

Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine

  • Living reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

A promising solution for soft tissue regeneration is tissue engineering, a multidisciplinary field of research which involves the use of biomaterials, growth factors, and stem cells in order to repair, replace, or regenerate tissues and organs damaged by injury or disease. The success of tissue engineering (TE) depends on the composition and microstructure of the used scaffolds. Ideally, scaffolds have to be similar to natural tissues. Collagen is the major component of the extracellular matrix of most soft tissues. The interactions between collagen and cells are vital in the wound healing process and in adult tissue remodeling, collagen being able to support differentiation and maintenance of cellular phenotype. As a natural molecule, collagen possesses the major advantage of being biodegradable, biocompatible, easily available, and highly versatile and presents low antigenicity. This chapter aims to present an overview on the structure, properties, and biomedical applications of collagen hydrogels. Moreover, it introduces the reader to the latest research in the field of tissue engineering related to collagen. It also displays the results we obtained as a joint bioengineering group on collagen hydrogels designed for soft (ATE) or cartilage tissue engineering (CTE) applications: type I collagen hydrogels improved with either silk sericin (CollSS) or with pro-chondrogenic factors – hyaluronic acid and chondroitin sulfate (CollSSHACS). Results indicated in both cases the positive influence of sericin on the interaction between cells and the surface of the hydrogels. In the absence of HA and CS, specific chondrogenic inducers, CollSS hydrogel is adapted for soft tissue reconstruction, whether the addition of HA and CS transforms CollSSHACS into a suitable hydrogel formula for semihard tissue repair via modern strategies in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl 79:958–971

    Article  CAS  PubMed  Google Scholar 

  2. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  3. Gyles DA, Castro LD, Carrera Silva JO Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392

    Article  CAS  Google Scholar 

  4. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544

    Article  CAS  PubMed  Google Scholar 

  5. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42

    Article  CAS  PubMed  Google Scholar 

  6. Saldin LT, Cramer MC, Velankar S, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15

    Article  CAS  PubMed  Google Scholar 

  7. Ramachandran GN (1967) Structure of collagen at the molecular level. In: Ramachandran GN (ed) Treatise on Collagen. Academic, London, pp 747–748

    Google Scholar 

  8. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potential for therapy. Annu Rev Biochem 64:403–434

    Article  CAS  PubMed  Google Scholar 

  9. Uitto J, Pulkkinen L, Chu ML (1999) Collagen. In: Freedberg IM (ed) Dermatology in general medicine. McGraw-Hill, New York, pp 303–314

    Google Scholar 

  10. Mecham R (2012) Overview of extracellular matrix. Curr Protoc Cell Biol 57:10.1.1–10.1.16

    Google Scholar 

  11. Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207(4437):1315–1322

    Article  CAS  PubMed  Google Scholar 

  12. Tian Z, Liu W, Li G (2016) The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym Degrad Stab 130:264–270

    Article  CAS  Google Scholar 

  13. Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136

    Article  CAS  PubMed  Google Scholar 

  14. Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105

    Article  CAS  PubMed  Google Scholar 

  15. Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprosthetic and drug delivery matrices. Biomaterials 17:471–484

    Article  CAS  PubMed  Google Scholar 

  16. Dunn MG, Avasarala PN, Zawadsky JP (1993) Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res 27:1545–1552

    Article  CAS  PubMed  Google Scholar 

  17. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768

    Article  CAS  PubMed  Google Scholar 

  18. Nimni ME, Cheung DT, Strates B, Kodama M, Sheikh K (1988) Bioprosthesis derived from cross-linked and chemically modified collagen tissues. In: Collagen and biomechanics, vol 2. CRC Press, Boca Raton, pp 202–206

    Google Scholar 

  19. Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J (1985) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6:460–472

    Article  Google Scholar 

  20. Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14:753–764

    Article  CAS  PubMed  Google Scholar 

  21. Goissis G, Marcantonio E Jr, Marcantonio RAC, Lia RCC, Cancia DCJ, De Carvalho WM (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34

    Article  CAS  PubMed  Google Scholar 

  22. Tu R, Lu CL, Thzagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC (1993) Kinetic study of collagen fixation with polyepoxy fixatives. J Biomed Mater Res 27:3–9

    Article  CAS  PubMed  Google Scholar 

  23. Nishi C, Nakajima N, Ikada Y (1995) In vitro evaluation of cytotoxicity of diepoxy compounds used for biomedical modification. J Biomed Mater Res 29:829–834

    Article  CAS  PubMed  Google Scholar 

  24. Petide H, Rault I, Huc A, Menasche PH, Herbage D (1990) Use of the acyl azide method for crosslinking collagen-rich tissues such as pericardium. J Biomed Mater Res 24:179–187

    Article  Google Scholar 

  25. Anselme K, Petite H, Herbage D (1992) Inhibition of calcification in vivo by acyl azide crosslinking of a collagen-glycosaminoglycan sponge. Matrix 12:264–273

    Article  CAS  PubMed  Google Scholar 

  26. Liu T, Shi L, Gu Z, Dan W, Dan N (2017) A novel combined polyphenol-aldehyde crosslinking of collagen film- applications in biomedical materials. Int J Biol Macromol 101:889–895

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Guo L, Fan Y, Zhang X (2013) Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol 61:487–493

    Article  CAS  PubMed  Google Scholar 

  28. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  29. Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J (2000) Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin. Bone 26:367–373

    Article  CAS  PubMed  Google Scholar 

  30. Kleimann HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485

    Article  Google Scholar 

  31. Skopinska-Wisniewska J, Kuderko J, Bajek A, Maj M, Sionkowska A, Ziegler-Borowska M (2016) Collagen/elastin hydrogels cross-linked by squaric acid. Mater Sci Eng C Mater Biol Appl 60:100–108

    Article  CAS  PubMed  Google Scholar 

  32. Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. Mater Sci Eng C Mater Biol Appl 69:388–397

    Article  CAS  PubMed  Google Scholar 

  33. Ma Z, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces 143:81–87

    Article  CAS  PubMed  Google Scholar 

  34. Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Albu Kaya MG, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59

    Article  CAS  Google Scholar 

  35. Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500

    Article  CAS  PubMed  Google Scholar 

  36. Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C Mater Biol Appl 53:212–221

    Article  CAS  PubMed  Google Scholar 

  37. Burgeson RE, Nimni ME (1992) Molecular structure and tissue distribution. Clin Orthop Relat Res 282:250–272

    Google Scholar 

  38. Hayrapetyan A, Bongio M, Leeuwenburgh SC, Jansen JA, van den Beuken JJ (2016) Effect of nano-HA/collagen composite hydrogels on osteogenic behaviour of mesenchymal stromal cells. Stem Cell Rev 12(3):352–364

    Article  CAS  PubMed Central  Google Scholar 

  39. Gurumurty B, Bierdeman PC, Janorkar AV (2016) Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 32(10):1270–1280

    Article  CAS  Google Scholar 

  40. Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271

    Article  CAS  Google Scholar 

  41. Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A (2018) CD34+ cells 756 seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. 757 J Biomed Mater Res B Appl Biomater 106(4):1505–1516

    Google Scholar 

  42. Nguyen BB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP (2017) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A 105(4):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH (2015) A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater 244(9):1359–1368

    Article  CAS  Google Scholar 

  44. Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JA, Stevens MM (2015) Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 99:56–71

    Article  CAS  Google Scholar 

  45. Fensky F, Reichert JC, Traube A, Rackwitz L, Siebenlist S, Nöth U (2014) Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomed Tech (Berl) 59(5):375–383

    Article  CAS  Google Scholar 

  46. Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y (2013) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549

    Article  PubMed  Google Scholar 

  47. Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J, Zhang X (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Chen X, Yuan T, Yang X, Fan Y, Zhang X (2017) Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Mater Sci Eng C Mater Biol Appl 70.(Pt 2:983–991

    Article  CAS  PubMed  Google Scholar 

  49. Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L (2017) Skeletal myoblast-seeded vascularized tissue scaffolds in the treatment of a large volumetric muscle defect in the rat biceps femoris muscle. Tissue Eng Part A 23:989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z (2015) Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 15:55–64

    Article  CAS  PubMed  Google Scholar 

  51. van Marion MH, Bax NA, van Turnhout MC, Mauretti A, van der Schaft DW, Goumans MJ, Bouten CV (2015) Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. J Mol Cell Cardiol 87:79–91

    Article  CAS  PubMed  Google Scholar 

  52. Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, Hossein Ahmadi Tafti S (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomater Sci Polym Ed 28(8):794–805

    Article  CAS  PubMed  Google Scholar 

  53. Kaneko A, Matsushita A, Sankai Y (2015) A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 10(1):015008

    Article  CAS  PubMed  Google Scholar 

  54. Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW (2014) Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater 10(10):4425–4436

    Article  CAS  PubMed  Google Scholar 

  55. Park JW, Kang YD, Kim JS, Lee JH, Kim HW (2014) 3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. Biochem Biophys Res Commun 447(3):400–406

    Article  CAS  PubMed  Google Scholar 

  56. Roberts MA, Kotha SS, Phong KT, Zheng Y (2016) Micropatterning and assembly of 3D microvessels. J Vis Exp 115:e54457, 1–10

    Google Scholar 

  57. Kuo KC, Lin RZ, Tien HW, Wu PY, Li YC, Melero-Martin JM, Chen YC (2015) Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 27:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rafat M, Xeroudaki M, Koulikovska M, Sherrell P, Groth F, Fagerholm P, Lagali N (2016) Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 83:142–155

    Article  CAS  PubMed  Google Scholar 

  59. Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M (2013) Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater 9(8):7796–7805

    Article  CAS  PubMed  Google Scholar 

  60. Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M (2009) Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30(8):1551–1559

    Article  CAS  PubMed  Google Scholar 

  61. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158

    Article  CAS  PubMed  Google Scholar 

  62. McLaughlin CR, Fagerholm P, Muzakare L, Lagali N, Forrester JV, Kuffova L, Rafat MA, Liu Y, Shinozaki N, Vascotto SG, Munger R, Griffith M (2008) Regeneration of corneal cells and nerves in an implanted collagen corneal substitute. Cornea 27(5):580–589

    Article  PubMed  Google Scholar 

  63. Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, Pai SB, Brahma B, MacDonald TJ, Bellamkonda RV (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers. Nat Mater 13(3):308–316

    Article  CAS  PubMed  Google Scholar 

  64. Rao SS, Dejesus J, Short AR, Otero JJ, Sarkar A, Winter JO (2013) Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces 5(19):9276–9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lungu A, Albu MG, Stancu IC, Florea NM, Vasile E, Iovu H (2013) Superporous collagen-sericin scaffolds. J Appl Polym Sci 127(3):2269–2279

    Article  CAS  Google Scholar 

  66. Mitran V, Albu MG, Vasile E, Cimpean A, Costache M (2015) Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds. Prog Nat Sci Mater Int 25(2):122–130

    Article  CAS  Google Scholar 

  67. Dinescu S, Galateanu B, Albu M, Cimpean A, Dinischiotu A, Costache M (2013) Sericin enhances the bioperformance of collagen-based matrices preseeded with hADSCs. Int J Mol Sci 14(1):1870–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405

    Article  CAS  PubMed  Google Scholar 

  69. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effects of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dinescu S, Gălățeanu B, Albu M, Lungu A, Radu E, Hermenean A, Costache M (2013) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013(111):article ID 598056

    Google Scholar 

  71. Kaya DA, Albu MG, Vuluga Z, Duran N, Albu L, Mert A. Collagen biomaterials with zeolite and essential oils for treatment of skin infections and method for their preparation. National Patent Application, OSIM no A 01269/29.11.2011

    Google Scholar 

  72. Houdek MT, Wyles CC, Stalboerger PG, Terzic A, Behfar A, Moran SL (2016) Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plast Reconstr Surg 137(5):1498–1506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding sources that supported this work: grant 65PCCDI/2018 (REGMED), Project 3- dedicated to regeneration of soft tissues and to national project Bridge Grant PNIII-P2-2.1-BG-2016660 0458 (123BG/2016), as well as the National Executive Agency for Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Costache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dinescu, S., Albu Kaya, M., Chitoiu, L., Ignat, S., Kaya, D.A., Costache, M. (2018). Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics