Skip to main content

Advertisement

Log in

The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous scaffolds in neural tissue engineering provide an alternative approach for neural regeneration. Since the topography of a surface affects the microscopic behaviour of material; the creation of nanoscale surface features, which mimic the natural roughness of live tissue, on polymer surfaces can promote an appropriate cell growth and proliferation. In this research, a unique PLGA nanofibrous structure was fabricated without any post-electrospinning treatment. Scaffolds were prepared in two general groups: cylindrical and ribbon-shaped electrospun fibres, with smooth and rough (porous and grooved) surfaces. The experiments about nerve cell culture have demonstrated that the nanoroughness of PLGA electrospun scaffolds can increase the cell growing rate to 50 % in comparison with smooth and conventional electrospun scaffolds. SEM and AFM images and MTT assay results have shown that the roughened cylindrical scaffolds enhance the nerve growth and proliferation compared to smooth and ribbon-shaped nanofibrous scaffolds. A linear interaction has been found between cell proliferation and surface features. This helps to approximate MTT assay results by roughness parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. J Adv Drug Deliv Rev. 2009;61:1055–64.

    Article  CAS  Google Scholar 

  2. Tabesh H, Amoabediny G, Salehi Nik N, Heydari M, Yosefifard M, Ranaei Siadat SO, Mottaghy K. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int. 2009;54:73–83.

    Article  CAS  Google Scholar 

  3. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  4. Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59:1392–412.

    Article  CAS  Google Scholar 

  5. Lowery JL, Datta N, Routledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(var epsilon-caprolactone) fibrous mats. Biomaterials. 2010;31:491–504.

    Article  CAS  Google Scholar 

  6. Zhou J, Cao C, Ma X. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int J Biol Macromol. 2009;45:504–10.

    Article  CAS  Google Scholar 

  7. Teixeira A, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci. 2003;116:1881–9.

    Article  CAS  Google Scholar 

  8. Ikada Y. Tissue engineering fundamentals and applications interface science and technology. Tokyo: Elsevier Academic; 2008. p. 41–65.

    Google Scholar 

  9. Kim G, Park J, Park S. Surface-treated and multilayered poly(e-caprolactone) nanofiber webs exhibiting enhanced hydrophilicity. J Polym Sci Polym Phys. 2007;45:2038–45.

    Article  CAS  Google Scholar 

  10. Xiong Y, et al. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials. 2009;30:3711–22.

    Article  CAS  Google Scholar 

  11. Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800–9.

    Article  CAS  Google Scholar 

  12. Yuan-yuan D, Jun J, Shao-hai W, Wei Y, Lei J, Zhong-yi W. Preparation of PLGA electrospun nanofibers for tissue engineering applications. J US China Med Sci. 2007;4:41–4.

    Google Scholar 

  13. Krych AG, Rooney GE, Schermerhorn BC. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Acta Biomater. 2009;5:2551–9.

    Article  CAS  Google Scholar 

  14. Moore MJ, Friedman A, Lewellyn EB. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006;27:419–29.

    Article  CAS  Google Scholar 

  15. Yao L, Wang S, Cui W, Sherlock R, O’Connell C, Damodaran G, Gorman A, Windebank A, Pandit A. Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomater. 2009;5:580–8.

    Article  CAS  Google Scholar 

  16. Bible E, Chau DYS, Alexander MR, Price J, Shakesheff KM, Modo M. The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials. 2009;30:2985–94.

    Article  CAS  Google Scholar 

  17. Bini TB, Gao S, Tan TC, Wang S, Lim A, Hai LB, Ramakrishna S. Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology. 2004;15:1459–64.

    Article  CAS  Google Scholar 

  18. Zheng YF, Li C, Li CJ, Cai W, Zhao LC. Surface characteristics and biological properties of paclitaxel-embedding PLGA coating on TiNi alloy. Mater Sci Eng A. 2005;438–440:1119–23.

    Google Scholar 

  19. Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W. Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res. 2002;62:438–46.

    Article  CAS  Google Scholar 

  20. Yang J, Bei J, Wang S. Enhanced cell affinity of poly(d, l-lactide) by combing plasma treatment with collagen anchorage. Biomaterials. 2002;23:2607–14.

    Article  CAS  Google Scholar 

  21. Chung TW, Liu DZ, Wang SY, Wang SS. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 2003;24:4655–61.

    Article  CAS  Google Scholar 

  22. Xinghua Z, Chuanbao C, Xilan M, Yanan L. Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions. J Mater Sci Mater Med. 2012;23:315–24.

    Google Scholar 

  23. Tze-Wen C, Shoei-Shen W, Yen-Zen W, Chien-Hung H. Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly(e-caprolactone) films is influenced by nano-roughness chitosan surfaces. J Mater Sci Mater Med. 2009;20:397–404.

    Article  Google Scholar 

  24. Chun YW, Khang D, Haberstroh KM, Webstermah TJ. The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation. Nanotechnology. 2009;20(8):085104.

    Google Scholar 

  25. Miller DC, Haberstroh KM, Webster TJ. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A. 2007;81:678–84.

    Google Scholar 

  26. Wang GJ, Lin YC, Li CW, Hsueh CC. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates. Biomed Microdevices. 2009;11:843–50.

    Article  Google Scholar 

  27. Lampin M, Warocquier-Clerout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36:99–108.

    Article  CAS  Google Scholar 

  28. Deitzel JM, Kleinmeyer J, Harris D, Beak-Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261–72.

    Article  CAS  Google Scholar 

  29. Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913–22.

    Article  CAS  Google Scholar 

  30. Vrieze SD, Camp TV, Nelvig A, Hagstrom B, Westbroek P, Clerck KD. The effects of temperature and humidity on electrospinning. J Mater Sci. 2009;44:1357–62.

    Article  Google Scholar 

  31. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific; 2005. p. 90-154.

  32. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R. Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications carbohydrate. Polymers. 2009;77:863–9.

    CAS  Google Scholar 

  33. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishn S. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.

    Article  CAS  Google Scholar 

  34. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J Mater Process Technol. 2002;123:133–45.

    Article  Google Scholar 

  35. Dong WP, Sullivan PJ, Stout KJ. Comprehensive study of parameters for characterising three-dimensional surface topography III: parameters for characterising amplitude and some functional. Wear. 1994;178:29–43.

    Article  CAS  Google Scholar 

  36. Deligianni DD, Katsala ND, Koutsoukos PG, MissirlisYF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22:87–96.

    Article  Google Scholar 

  37. Rosales-Leala JI, Rodríguez-Valverdeb MA, Mazzagliaa G, Ramón-Torregrosab PJ, Díaz-Rodríguezc L, García-Martínezc O, Vallecillo-Capillaa M, Ruizc C, Cabrerizo-Vílchezb MA. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Aspects. 2010;365:222–9.

    Article  Google Scholar 

  38. Zan Q, Wang C, Dong L, Cheng P, Yian J. Effect of surface roughness of chitosan-based microspheres on cell adhesion. Appl Surf Sci. 2008;255:401–3.

    Article  CAS  Google Scholar 

  39. Whitehouse DJ. Handbook of surface and nanometrology. 2nd ed. New York: CRC Press Taylor & Francis; 1994. p. 493–622.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Latifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, F., Amani-Tehran, M., Latifi, M. et al. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci: Mater Med 24, 1551–1560 (2013). https://doi.org/10.1007/s10856-013-4905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4905-6

Keywords

Navigation