Skip to main content
Log in

Cross-linked hyaluronic acid sub-micron particles: in vitro and in vivo biodistribution study in cancer xenograft model

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper focused on the biodistribution of the cross-linked hyaluronic acid (HA-NPs) sub-micron particles in tumor-bearing mice. Solvent-non solvent method followed glutaraldehyde cross-linking utilized for the fabrication of HA-NPs. Size measurement and morphological analysis were performed by dynamic light scattering and electron microscopy, respectively and the size found to be in the range of 200–400 nm. In vitro viability in LNCaP cell line was assessed by water soluble tetrazolium assay after 24 h of exposure to sub-micron particles and no toxicity was found to higher concentration of 3 mg/mL. Internalization of particles in prostate cancer cell LNCaP were studied by confocal microscopy with FITC labeled submicron particles and involvement of hyaluronan receptor mediated uptake/endocytosis was confirmed by competitive assay. Biodistribution studies were performed in xenograft prostate cancer mice model with fluorophore labeled particles and monitored in tumoral parenchyma with strong fluorescence, meanwhile very less signal in liver, kidney and spleen while no fluorescence found in lung after 24 h of systemic administration; that shown ability of this HA based system to recognize cancer tissue. These result fetched that hyaluronic acid based system is selective for tumoral site and can be utilized to deliver bioactives in specific (targeting) and controlled (temporal) manner to cancerous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information rich system. Eur J Cell Biol. 2006;85:699–715.

    Article  CAS  Google Scholar 

  2. Zahalka MA, Okon E, Gosslar U, Holzmann B, Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol. 1995;154:5345–55.

    CAS  Google Scholar 

  3. Strobel T, Swanson L, Cannistra CA. In vivo inhibition of CD44 limits intra abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res. 1997;57:1228–32.

    CAS  Google Scholar 

  4. Benitez A, Yates TJ, Lopez LE, Cerwinka WH, Bakkar A, Lokeshwar VB. Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res. 2011;71:4085–95.

    Article  CAS  Google Scholar 

  5. Stauder R, Eisterer W, Thaler J, Gunthert U. CD44 variant isoforms in non-Hodgkin’s lymphoma: a new independent prognostic factor. Blood. 1995;85:2885–99.

    CAS  Google Scholar 

  6. Mulder JW, Kruyt PM, Sewnath M, Oosting J, Seldenrijk CA, Weidema WF, Offerhaus GJ, Pals ST. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet. 1994;344:1470–2.

    Article  CAS  Google Scholar 

  7. Mayer B, Jauch KW, Gunthert U, Figdor CG, Schildberg FW, Funke I, Johnson JP. De novo expression of CD44 and survival in gastric cancer. Lancet. 1993;342:1019–22.

    Article  CAS  Google Scholar 

  8. Günthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13–24.

    Article  Google Scholar 

  9. Terpe HJ, Storkel S, Zimmer U, Anquez V, Fischer C, Pantel K, Gunthert U. Expression of CD44 isoforms in renal cell tumors Positive correlation to tumor differentiation. Am J Pathol. 1996;148:453–63.

    CAS  Google Scholar 

  10. Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade clinicopathologic parameters p53 expression and patient survival. J Hepatol. 2000;32:78–84.

    Article  CAS  Google Scholar 

  11. Kainz C, Kohlberger P, Sliutz G, Tempfer C, Heinzl H, Reinthaller A, Breitenecker G. Koelbl H splice variants of CD44 in human cervical cancer stage IB to IIB. Gynecol Oncol. 1995;57:383–7.

    Article  CAS  Google Scholar 

  12. Uhl-Steidl M, Muller-Holzner E, Zeimet AG, Adolf GR, Daxenbichler G, Marth C, Dapunt O. Prognostic value of CD44 splice variant expression in ovarian cancer. Oncololgy. 1995;52:400–6.

    Article  CAS  Google Scholar 

  13. Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, Sasaki I, Matsuno S. Introduction of antisense CD44 cDNA down-regulates expression of overall CD44 isoforms and inhibits tumour growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001;91:67–75.

    Article  CAS  Google Scholar 

  14. Kaufmann M, Heider KH, Sinn HP, von Minckwitz G, Ponta H, Herrlich P. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet. 1995;345:615–9.

    Article  CAS  Google Scholar 

  15. Manten-Horst E, Danen EH, Smit L, Snoek M, Le Poole IC, Van Muijen GN, Pals ST, Ruiter DJ. Expression of CD44 splice variants in human cutaneous melanoma and melanoma cell lines is related to tumor progression and metastatic potential. Int J Cancer. 1995;64:182–8.

    Article  CAS  Google Scholar 

  16. Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv. 2010;7:681–703.

    Article  CAS  Google Scholar 

  17. Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    Article  CAS  Google Scholar 

  18. Choi KY, Chung H, Hyun K, Hong M, Yoon Y, Kim K, Park JH, Kwon IC, Jeong SY. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 2010;31:106–14.

    Article  CAS  Google Scholar 

  19. Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung SJ, Lee S, Chen X, Kwon IC, Choi K, Jeong SY, Kim K, Park JH. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012;33:6186–93.

    Article  CAS  Google Scholar 

  20. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  Google Scholar 

  21. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62:90–9.

    Article  CAS  Google Scholar 

  22. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  Google Scholar 

  23. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58:1532–55.

    Article  CAS  Google Scholar 

  24. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  CAS  Google Scholar 

  25. Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrinconjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm. 2005;2:373–83.

    Article  CAS  Google Scholar 

  26. Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25:2843–9.

    Article  CAS  Google Scholar 

  27. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2:8–21.

    Article  Google Scholar 

  28. de Belder AN, Wik KO. Preparation and properties of fluorescein-labeled hyaluronate. Carbohydr Res. 1975;44:251–7.

    Article  Google Scholar 

  29. Shannon RS, Minakshi N, Nihal A. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.

    Google Scholar 

  30. Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, et al. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(þ) human ovarian carcinoma xenografts. Neoplasia. 2007;9:479–86.

    Article  CAS  Google Scholar 

  31. Lee H, Mok H, Lee S, Oh YK, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release. 2007;119(2):245–52.

    Article  CAS  Google Scholar 

  32. Harris EN, Kyosseva SV, Weigel JA, Weigel PH. Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). J Biol Chem. 2007;282(5):2785–97.

    Article  CAS  Google Scholar 

  33. Choi KY, Min KH, Na JH, et al. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem. 2009;19(24):4102–7.

    Article  CAS  Google Scholar 

  34. Kurtzhals P, Larsen C, Johansen M. High performance size-exclusion chromatographic procedure for the determination of fluoresceinyl isothiocyanate dextrans of various molecular masses in biological media. J Chromatogr. 1989;491:117–27.

    CAS  Google Scholar 

  35. Dacai L, Pearlment E, Diaconu E, Kun G, Hiroshi M, HaqqI S, Sanford M, Willson J, Sun SM. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci. 1996;93:7832–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, F., Quagliariello, V., Tortora, C. et al. Cross-linked hyaluronic acid sub-micron particles: in vitro and in vivo biodistribution study in cancer xenograft model. J Mater Sci: Mater Med 24, 1473–1481 (2013). https://doi.org/10.1007/s10856-013-4895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4895-4

Keywords

Navigation