Skip to main content

Advertisement

Log in

Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It is well known that some microorganisms affect the corrosion of dental metal. Oral bacteria such as Actinomyces naeslundii may alter the corrosion behavior and stability of titanium. In this study, the corrosion behavior of titanium was studied in a nutrient-rich medium both in the presence and the absence of A. naeslundii using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). A. naeslundii was able to colonize the surface of titanium and then form a dense biofilm. The SEM images revealed the occurrence of micropitting corrosion on the metal surface after removal of the biofilm. The electrochemical corrosion results from EIS showed a significant decrease in the corrosion resistant (Rp) value after immersing the metal in A. naeslundii culture for 3 days. Correspondingly, XPS revealed a reduction in the relative levels of titanium and oxygen and an obvious reduction of dominant titanium dioxide (TiO2) in the surface oxides after immersion of the metal in A. naeslundii culture. These results suggest that the metabolites produced by A. naeslundii can weaken the integrity and stability of the protective TiO2 in the surface oxides, which in turn decreases the corrosion resistance of titanium, resulting in increased corrosion of titanium immersed in A. naeslundii solution as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Broggini N, Mcmanus LM, Hermann JS, Medina R, Schenk RK, Buser D, Cochran DL. Peri-implant inflammation defined by the implant–abutment interface. J Dent Res. 2006;85:473.

    Article  CAS  Google Scholar 

  2. Gil FJ, Rodriguez A, Espinar E, Llamas JM, Padulles E, Juarez A. Effect of oral bacteria on the mechanical behavior of titanium dental implants. Int J Oral Maxillofac Implants. 2012;27:64.

    Google Scholar 

  3. Souza JC, Henriques M, Oliveira R, Teughels W, Celis JP, Rocha LA. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling. 2010;26:471.

    Article  CAS  Google Scholar 

  4. Passariello C, Puttini M, Virga A, Gigola P. Microbiological and host factors are involved in promoting the periodontal failure of metaloceramic crowns. Clin Oral Investig. 2011;16(3):987–95.

    Article  Google Scholar 

  5. Wylie CM, Shelton RM, Fleming GJ, Davenport AJ. Corrosion of nickel-based dental casting alloys. Dent Mater. 2007;23:714.

    Article  CAS  Google Scholar 

  6. Bahije L, Benyahia H, El Hamzaoui S, Ebn Touhami M, Bengueddour R, Rerhrhaye W, Abdallaoui F, Zaoui F. Behavior of NiTi in the presence of oral bacteria: corrosion by Streptococcus mutans. Int Orthod. 2011;9:110.

    Google Scholar 

  7. Papadopoulou K, Eliades T. Microbiologically-influenced corrosion of orthodontic alloys: a review of proposed mechanisms and effects. Aust Orthod J. 2009;25:63.

    Google Scholar 

  8. Satoh H, Odagiri M, Ito T, Okabe S. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res. 2009;43:4729.

    Article  CAS  Google Scholar 

  9. Rodriguez-Hernandez AG, Juarez A, Engel E, Gil FJ. Streptococcus sanguinis adhesion on titanium rough surfaces: effect of shot-blasting particles. J Mater Sci Mater Med. 2011;22:1913.

    Article  CAS  Google Scholar 

  10. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75:292.

    Article  Google Scholar 

  11. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(Suppl 2):68.

    Article  Google Scholar 

  12. Kanematsu H, Ikigai H, Yoshitake M. Evaluation of various metallic coatings on steel to mitigate biofilm formation. Int J Mol Sci. 2009;10:559.

    Article  CAS  Google Scholar 

  13. Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. J Appl Microbiol. 2010;109:166.

    CAS  Google Scholar 

  14. Carlen A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001;22:481.

    Article  CAS  Google Scholar 

  15. Balkin Twr BE, Feik D, Molzan AK, Ram TE. Microbiology of human mandibular subperiosteal dental implants in health and disease. J Dent Res. 2000;79:168.

    Google Scholar 

  16. Scarano A, Assenza B, Piattelli M, Iezzi G, Leghissa GC, Quaranta A, Tortora P, Piattelli A. A 16-year study of the microgap between 272 human titanium implants and their abutments. J Oral Implantol. 2005;31:269.

    Article  Google Scholar 

  17. Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol. 2008;66:637.

    Article  CAS  Google Scholar 

  18. Kitada K, Oho T. Effect of saliva viscosity on the co-aggregation between oral streptococci and Actinomyces naeslundii. Gerodontology. 2011;29(2):e981–7.

    Article  Google Scholar 

  19. Yu WQ, Qiu J, Xu L, Zhang FQ. Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed Mater. 2009;4:065012.

    Article  Google Scholar 

  20. Yu WQ, Qiu J, Zhang FQ. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins. Colloids Surf B. 2011;84:400.

    Article  CAS  Google Scholar 

  21. Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, Bachle M, Follo M, Wolkewitz M, Hannig C, Hellwig E, Carvalho C, Kohal R. Biofilm formation and composition on different implant materials in vivo. J Biomed Mater Res B. 2010;95:101.

    CAS  Google Scholar 

  22. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989;68:750.

    Article  CAS  Google Scholar 

  23. Gibbons RJ, Hay DI. Adsorbed salivary acidic proline-rich proteins contribute to the adhesion of Streptococcus mutans JBP to apatitic surfaces. J Dent Res. 1989;68:1303.

    Article  CAS  Google Scholar 

  24. Gibbons RJ, Hay DI, Cisar JO, Clark WB. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14 V-J1 on apatitic surfaces. Infect Immun. 1988;56:2990.

    CAS  Google Scholar 

  25. Qiu J, Yu WQ, Zhang FQ. Effects of the porcelain-fused-to-metal firing process on the surface and corrosion of two Co–Cr dental alloys. J Mater Sci. 2011;46:1359.

    Article  CAS  Google Scholar 

  26. Sharma M, Kumar Av, Singh N. Electrochemical corrosion behaviour of dental/implant alloys in saline medium. J Mater Sci Mater Med. 2008;19:2647.

    Article  CAS  Google Scholar 

  27. Metikos-Hukovic M, Pilic Z, Babic R, Omanovic D. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank’s solution. Acta Biomater. 2006;2:693.

    Article  Google Scholar 

  28. Takahashi N, Yamada T. Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med. 1999;10:487.

    Article  CAS  Google Scholar 

  29. Pope DH, Duquette DJ, Johannes AH, Wayner PC. Microbiologically influenced corrosion of industrial alloys. Mater Perform. 1984;4:14.

    Google Scholar 

  30. Palaghias G. Corrosion of dental amalgams in solutions of sodium chloride, sodium sulfide and ammonia. Scand J Dent Res. 1986;94:274.

    CAS  Google Scholar 

  31. Bilhan H, Bilgin T, Cakir AF, Yuksel B, Von Fraunhofer JA. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva. J Biomater Appl. 2007;22:197.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the National Natural Science Foundation of China (Project Number: 81201201 and 81200265), by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (Project Number: 11KJB320004), and by the Shanghai Leading Academic Discipline Project (Project Number: T0202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Qiang Zhang or Qing-Feng Huang.

Additional information

Song-Mei Zhang and Jing Qiu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SM., Qiu, J., Tian, F. et al. Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii . J Mater Sci: Mater Med 24, 1229–1237 (2013). https://doi.org/10.1007/s10856-013-4888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4888-3

Keywords

Navigation