Skip to main content

Advertisement

Log in

Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, the 45S5 bioactive glass was synthesized through an aqueous sol–gel method. Characteristic functional groups were evidenced by Fourier transform infrared spectroscopy, the thermal behaviour was investigated by thermogravimetric and differential thermal analysis, crystallization kinetics and phase evolution were followed by X-ray diffraction measurements. The sintering behaviour of the sol–gel derived 45S5 was then studied by dilatometry and the microstructural evolution was followed step-by-step, interrupting the thermal cycle at different temperatures. In vitro dissolution tests were performed in order to assess the degradation behaviour of sol–gel derived 45S5 samples thermally treated at different temperatures. A relevant influence of the calcination conditions (namely, dwelling time and temperature) of the as-prepared powder on the phase appearance and its sintering behaviour as well as on the porosity features, in terms of pore dimension and interconnectivity, of the fired materials was stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3(7):3867–910.

    Article  CAS  Google Scholar 

  2. Hench LL, Day DE, Höland W, Rheinberger VM. Glass and medicine. Int J Appl Glass Sci. 2010;1(1):104–17.

    Article  CAS  Google Scholar 

  3. Vallet-Regı M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;17(1):97–108.

    Article  Google Scholar 

  4. Rau JV, Teghil R, Fosca M, De Bonis A, Cacciotti I, Bianco A, Rossi Albertini V, Caminiti R, Ravaglioli A. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route). Mater Res Bull. 2012;47(5):1130–7.

    Article  CAS  Google Scholar 

  5. Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29:1257–65.

    Article  CAS  Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  7. Hench LL. Bioceramics, a clinical success. Am Ceram Soc Bull. 1998;77(7):67–74.

    CAS  Google Scholar 

  8. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.

    Article  CAS  Google Scholar 

  9. Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials. 2005;26:3873–9.

    Article  CAS  Google Scholar 

  10. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2:231–9.

    Article  CAS  Google Scholar 

  11. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials. 2011;32(11):2757–74.

    Article  CAS  Google Scholar 

  12. Siqueira RL, Peitl O, Zanotto ED. Gel-derived SiO(2)–CaO–Na(2)O–P(2)O(5) bioactive powders: Synthesis and in vitro bioactivity. Mater Sci Eng C. 2011;31(5):983–91.

    Article  CAS  Google Scholar 

  13. Chen Q-Z, Thouas GA. Fabrication and characterization of sol-gel derived 45S5 bioglass (R)-ceramic scaffolds. Acta Biomater. 2011;7(10):3616–26.

    Article  CAS  Google Scholar 

  14. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61(2):301–11.

    Article  CAS  Google Scholar 

  15. Hamadouche M, Meunier A, Greenspan DC, Blanchat C, Zhong JP, La Torre GP, Sedel L. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J Biomed Mater Res. 2001;54(4):560–6.

    Article  CAS  Google Scholar 

  16. Boccaccini AR, Chen QZ, Lefebvre L, Gremillard L, Chevalier J. Sintering, crystallization and biodegradation behaviour of bioglass®-derived glass–ceramics. Faraday Dis. 2007;136:27–44.

    Article  CAS  Google Scholar 

  17. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.

    Article  CAS  Google Scholar 

  18. Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non Cryst Solids. 2003;318(1–2):43–8.

    Article  CAS  Google Scholar 

  19. Li P, Yang Q, Zhang F, Kokubo T. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci Mater Med. 1992;3(6):452–6.

    Article  CAS  Google Scholar 

  20. Peitl O, Zanotto ED, Hench LL. Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non Cryst Solids. 2001;292(1–3):115–26.

    Article  CAS  Google Scholar 

  21. Clupper DC, Mecholsky JJ Jr, LaTorre GP, Greenspan DC. Bioactivity of tape cast and sintered bioactive glass–ceramic in simulated body fluid. Biomaterials. 2002;23(12):2599–606.

    Article  CAS  Google Scholar 

  22. Chen QZ, Boccaccini AR. Coupling mechanical competence and bioresorbability in bioglass®-derived tissue engineering scaffolds. Adv Eng Mater. 2006;8:285–9.

    Article  CAS  Google Scholar 

  23. Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D. Sintering behaviour of 45S5 bioactive glass. Acta Biomater. 2008;4:1894–903.

    Article  CAS  Google Scholar 

  24. Balas F, Arcos D, Pérez-Pariente J, Vallet-Regı′ M. Textural properties of SiO2–CaO–P2O5 glasses prepared by the sol–gel method. J Mater Res. 2001;16:1345–8.

    Article  CAS  Google Scholar 

  25. Jokinen M, Rahiala H, Rosenholm B, Peltola T, Kangasniemi I. Relation between aggregation and heterogeneity of obtained structure in sol–gel derived CaO–P2O5–SiO2. J Sol Gel Sci Tech 1998;12:159–67.

    Article  CAS  Google Scholar 

  26. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  CAS  Google Scholar 

  27. Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 2009;29:335–40.

    Article  CAS  Google Scholar 

  28. Rizkalla AS, Jones DW, Clarke DB, Hall GC. Crystallization of experimental bioactive glass compositions. J Biomed Mater Res. 1996;32:119–24.

    Article  CAS  Google Scholar 

  29. Pelton AD, Wu P. Thermodynamic modeling in glass-forming melts. J Non Cryst Solids. 1999;253(1-3):178–91.

    Article  CAS  Google Scholar 

  30. Bellucci D, Cannillo V, Sola A. An overview of the effects of thermal processing on bioactive glasses. Sci Sinter. 2010;42:307–20.

    Article  CAS  Google Scholar 

  31. Huang L-C, Lin C-C, Shen P. Crystallization and stoichiometry of crystals in Na2CaSi2O6–P2O5 based bioactive glasses. Mat Sci Eng A. 2007;452–453:326–33.

    Article  Google Scholar 

  32. Arstila H, Vedel E, Hupa L, Hupa M. Factors affecting crystallization of bioactive glasses. J Eur Ceram Soc. 2007;27:1543–6.

    Article  CAS  Google Scholar 

  33. Lin CC, Huang LC, Shen P. Na2CaSi2O6–P2O5 based bioactive glasses: I. Elasticity and structure. J Non Cryst Solids. 2005;351:3195–203.

    Article  CAS  Google Scholar 

  34. Bretcanu O, Chatzistavrou X, Paraskevopoulos K, Conradt R, Thompson I, Boccaccini A. Sintering and crystallisation of 45S5 bioglass® powder. J Eur Ceram Soc. 2009;29:3299–306.

    Article  CAS  Google Scholar 

  35. Ghannam AE, Hamazawy E, Yehia A. Effect of thermal treatment on bioactive glass microstructure, corrosion behavior, ζ potential, and protein adsorption. J Biomed Mater Res. 2001;55(3):387–95.

    Article  Google Scholar 

  36. Chen QZ, Thompson ID, Boccaccini AR. 45S5 bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  CAS  Google Scholar 

  37. Jun I-K, Koh Y-H, Kim H-E. Fabrication of a highly porous bioactive glass–ceramic scaffold with a high surface area and strength. J Am Ceram Soc. 2006;89(1):391–4.

    Article  CAS  Google Scholar 

  38. Elgayar I, Aliev AE, Boccaccini AR, Hill RG. Structural analysis of bioactive glasses. J Non Cryst Solids. 2005;351:173–83.

    Article  CAS  Google Scholar 

  39. Koga N, Strnad Z, Sestak J, Strnad J. Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics. J Therm Anal Calorim. 2003;71(3):927–38.

    Article  CAS  Google Scholar 

  40. Chatzistavrou X, Zorba T, Kontonasaki E, Chrissafis K, Koidis P, Paraskevopoulos KM. Following bioactive glass behavior beyond melting temperature by thermal and optical methods. Phys Stat Sol. 2004;201(5):944–51.

    Article  CAS  Google Scholar 

  41. Aguiar H, Serra J, González P, León B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids. 2009;355:475–80.

    Article  CAS  Google Scholar 

  42. Bianco A, Cacciotti I, Lombardi M, Montanaro L. Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull. 2009;44(2):345–54.

    Article  CAS  Google Scholar 

  43. Serra J, González P, León B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids. 2009;355:475–80.

    Article  Google Scholar 

  44. Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G. Synthesis and characterisation of sol–gel derived bioactive glass for biomedical applications. Mater Lett. 2006;60:3752–7.

    Article  CAS  Google Scholar 

  45. Brooker RA, Kohn SC, Holloway JR, McMillan PF. Structural controls on the solubility of CO2 in silicate melts. Part II: IR characteristics of carbonate groups in silicate glasses. Chem Geol. 2001;174:241–54.

    Article  CAS  Google Scholar 

  46. Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M. FTIR and XPS studies of bioactive silica based glasses. J Non Cryst Solids. 2003;332:20–7.

    Article  CAS  Google Scholar 

  47. Chen Q-Z, Li Y, Jin L-Y, Quinn JMW, Komesaroff PA. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–53.

    Article  CAS  Google Scholar 

  48. Kashyap S, Griep K, Nychka JA. Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5. Mater Sci Eng C. 2011;31(4):762–9.

    Article  CAS  Google Scholar 

  49. Arcos D, Greenspan DC, Vallet-Regi M. Influence of the stabilization temperature on textural and structural features and ion release in SiO2–CaO–P2O5 sol–gel glasses. Chem Mater. 2002;14(4):1515–22.

    Article  CAS  Google Scholar 

  50. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8(1):1–4.

    Article  CAS  Google Scholar 

  51. Radin S, Ducheyne P, Rothman B, Conti A. The effect of in vitro modeling conditions on the surface reactions of bioactive glass. J Biomed Mater Res. 1997;37(3):363–75.

    Article  CAS  Google Scholar 

  52. Atalay S, Adiguzel HI, Atalay F. Infrared absorption study of Fe2O3–CaO–SiO2 glass ceramics. Mater Sci Eng A. 2001;304–306:796–9.

    Google Scholar 

  53. Ptacek P, Noskova M, Brandstetr J, Soukal F, Opravil T. Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution. Thermochim Acta. 2010;498(1-2):54–60.

    Article  CAS  Google Scholar 

  54. Daval D, Martinez I, Corvisier J, Findling N, Goffé B, Guyot F. Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modelling. Chem Geol. 2009;262:262–77.

    Article  Google Scholar 

  55. Cerruti M, Morterra C. Carbonate formation on bioactive glasses. Langmuir. 2004;20:6382–8.

    Article  CAS  Google Scholar 

  56. Palmero P, Azar M, Lombardi M, Chevalier J, Garnier V, Fantozzi G, Montanaro L. Effect of heating rate on phase and microstructural evolution during pressureless sintering of a nanostructured transition alumina. Int J Appl Ceram Technol. 2009;6:420–30.

    Article  CAS  Google Scholar 

  57. Cerruti M, Greenspan D, Powers K. Effect of pH and ionic strength on the reactivity of bioglass® 45S5. Biomaterials. 2005;26:1665–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors wish to acknowledge Dr. S. Antonaroli, Chemical Science and Technology Department-University of Rome “Tor Vergata”, Rome-Italy, for FT-IR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Cacciotti.

Additional information

Dedicated to Professor Gualtiero Gusmano in occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciotti, I., Lombardi, M., Bianco, A. et al. Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci: Mater Med 23, 1849–1866 (2012). https://doi.org/10.1007/s10856-012-4667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4667-6

Keywords

Navigation