Skip to main content

Advertisement

Log in

In vitro release profile of anti-ulcer drug rabeprazole from biocompatible psyllium-PVA hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present article discusses the synthesis, characterization and haemocompatibility behaviour of the psyllium-PVA hydrogels prepared by chemical method in the presence of N,N′-methylenebisacrylamide. These hydrogels have been characterized by Fourier Transform infrared spectroscopy, thermo gravimetric analysis, swelling and drug release studies. The release of model drug rabeprazole sodium from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism. Psyllium itself acts as anti-ulcer agent and release of rabeprazole from the drug loaded hydrogels may enhance the curing potential of the drug delivery device. The haemocompatibility was evaluated by studying the blood interactions with hydrogels with reference to thrombogenicity and haemolytic potential. Thrombogenicity results indicate that hydrogels are non-thrombogenic as the weight of clot formed and thrombus percentage for hydrogels was less than the positive control. The haemolytic index has been observed <5%. These observations indicate that these hydrogels are haemo-compatible and hence could be used for oral administration of antiulcer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Athawale VD, Rathi SC. Role and relevance of polarity and solubility of vinyl monomers in graft polymerization onto starch. React Funct Polym. 1997;34:11–7.

    Article  CAS  Google Scholar 

  2. Giusti P, Lazzeri L, Barbani N, Lelli L, De Petris S, Cascone MG. Blends of natural and synthetic polymers: a new route to novel biomaterials. Makromol Chemie Macromol Symp. 1994;78:285–97.

    CAS  Google Scholar 

  3. Sivakumar M, Radhakrishnan PRG, Kothandaraman H. Grafting of glycidyl methacrylate onto gelatin. J Appl Polym Sci. 1991;43:1789–94.

    Article  CAS  Google Scholar 

  4. Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropylacrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer. 2000;41:5713–9.

    Article  CAS  Google Scholar 

  5. Zhai M, Yoshii F, Kume T, Hashim K. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym. 2002;50:295–303.

    Article  CAS  Google Scholar 

  6. Casimiro MH, Gil MH, Leal JP. Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation. Nucl Instrum Methods Phys Res B. 2007;265:406–9.

    Article  CAS  Google Scholar 

  7. Friend DR. Gastrointestinal tract as a site for drug delivery. Adv Drug Deliv Rev. 1991;7:149–99.

    Article  CAS  Google Scholar 

  8. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery system. J Pharm Sci. 2003;6:33–66.

    CAS  Google Scholar 

  9. Reddy SM, Sinha VR, Reddy DS. Novel oral colon-specific drug delivery systems for pharmacotherapy of peptides and nonpeptide drugs. Drugs Today (Barc). 1999;35:537–80.

    CAS  Google Scholar 

  10. Guru GS, Prasad P, Shivakumar HR, Rai SK. Miscibility studies of polysaccharide xanthan gum/PVP blend. J Polym Environ. 2010;18:135–40.

    Article  CAS  Google Scholar 

  11. Hoare T, Bellas E, Zurakowski D, Kohane DS. Rheological blends for drug delivery II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J Biomed Mater Res A. 2010;92:586–95.

    Google Scholar 

  12. Chen L, Imam SH, Gordon SH, Greene RV. Starch-polyvinyl alcohol crosslinked film-performance and biodegradation. J Environ Polym Degrad. 1997;5:111–7.

    Article  CAS  Google Scholar 

  13. Miya M, Yoshikawa S, Iwamoto R, Mima S. Mechanical properties of poly(vinyl alcohol)-chitosan blend films. Kobunshi Ronbunshu. 1983;40:645–51.

    Article  CAS  Google Scholar 

  14. Miya M, Iwamoto R, Mima S. FT-IR study of intermolecular interactions in polymer blends. J Polym Sci Polym Phys Ed. 1984;22:1149–51.

    Article  CAS  Google Scholar 

  15. Alupei IC, Popa M, Hamcerencu M, Abadie MJM. Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol) 1. The study of the swelling properties. Eur Polym J. 2002;38:2313–20.

    Article  CAS  Google Scholar 

  16. Stasko J, Kalniņs M, Dzene A, Tupureina V. Poly(vinyl alcohol) hydrogels. Proc Est Acad Sci. 2009;58:63–6.

    Article  CAS  Google Scholar 

  17. Basak P, Adhikari B. Poly(vinyl alcohol) hydrogels for pH dependent colon targeted drug delivery. J Mater Sci Mater Med. 2009;20:137–46.

    Article  Google Scholar 

  18. Bourke SL, Al-Khalili M, Briggs T, Michniak BB, Kohn J, Poole-Warren LA. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. AAPS Pharm Sci. 2003;5:1–11.

    Article  Google Scholar 

  19. Chiellini E, Corti A, D’Antone S, Solaro R. Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci. 2003;28:963–1014.

    Article  CAS  Google Scholar 

  20. Orienti I, Trere R, Zecchi V. Hydrogels formed by cross-linked polyvinylalcohol as colon-specific drug delivery systems. Drug Dev Ind Pharm. 2001;27:877–84.

    Article  CAS  Google Scholar 

  21. DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol. 2003;41:319–26.

    Article  CAS  Google Scholar 

  22. Fischer HM, Nanxiong Y, Ralph RGJ, Andersond L, Marletta JA. The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res. 2004;339:2009–17.

    Article  CAS  Google Scholar 

  23. Singh B. Psyllium as therapeutic and drug delivery agent. Int J Pharm. 2007;334:1–14.

    Article  CAS  Google Scholar 

  24. Garcia CV, Paim CS, Steppe M, Schapoval EES. Development and validation of a dissolution test for rabeprazole sodium in coated tablets. J Pharm Biomed Anal. 2006;41:833–7.

    Article  CAS  Google Scholar 

  25. Stabilized pharmaceutical composition containing rabeprazole sodium with improved bioavailability. WIPO Patent WO/2006/011159, 2006.

  26. Gouda MM, Shyale S, Kumar PR, Kumar SMS. Physico-chemical characterization, UV spectrophotometric analytical method development and validation studies of rabeprazole sodium. J Chem Pharm Res. 2010;2:187–92.

    Google Scholar 

  27. Alfrey T, Gurnee EF, Lloyd WG. Diffusion in glassy polymers. J Polym Sci Part C. 1966;12:249–61.

    Google Scholar 

  28. Peppas NA, Korsmeyer RW. Dynamically swelling hydrogels in controlled release applications. In: Peppas NA, editor. Hydrogels in medicines and pharmacy, vol III. Properties and applications. Boca Raton: CRC Press Inc; 1987. pp. 118–21.

  29. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  30. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  31. Labarre D. Improving blood compatibility of polymeric surfaces. Trends Biomater artif Organ. 2001;15:1–3.

    Google Scholar 

  32. dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, Higa OZ, Gil MH. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int J Pharm. 2006;310:37–45.

    Article  Google Scholar 

  33. Lai Y, Yin W, Liu J, Xi R, Zhan J. One-pot green synthesis and bioapplication of l-arginine-capped superparamagnetic Fe3O4 nanoparticles. Nanoscale Res Lett. 2010;5:302–7.

    Article  CAS  Google Scholar 

  34. Imai Y, Nose YJ. New method for evaluation of antithrombogenicity of materials. Biomed Mater Res. 1972;6:165–72.

    Article  CAS  Google Scholar 

  35. US Pharmacopeial Convention. US Pharmacopeia XXIII. US Pharmacopeial Convention Inc.: Rockville; 1994. p. 119.

  36. Ferreira P, Pereira R, Coelho JFJ, Silva AFM, Gil MH. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int J Biol Macromol. 2007;40:144–52.

    Article  CAS  Google Scholar 

  37. American Society for Testing and Materials. ASTM F 756-00: standard practices for assessment of haemolytic properties of materials. ASTM: Philadelphia; 2000.

  38. Costa ES Jr, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76:472–81.

    Article  Google Scholar 

  39. Kudo S, Otsuka E, Suzuki A. Swelling behavior of chemically crosslinked PVA gels in mixed solvents. J Polym Sci Part B. 2010;48:1978–86.

    Article  CAS  Google Scholar 

  40. Jelicic A, Friedrich A, Jeremic K, Siekmeyer G, Taubert A. Polymer hydrogel/polybutadiene/iron oxide nanoparticle hybrid actuators for the characterization of NiTi implants. Materials. 2009;2:207–20.

    Article  CAS  Google Scholar 

  41. Singh B, Sharma N. Mechanistic implication for crosslinking in sterculia based hydrogels and their use in GIT drug delivery. Biomacromolecule. 2009;10:2515–32.

    Article  CAS  Google Scholar 

  42. Yang X, Zhu Z, Liu Q, Chen X, Ma M. Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by g-irradiation followed by freeze-thawing. Radiat Phys Chem. 2008;77:954–60.

    Article  CAS  Google Scholar 

  43. Hassan CM, Ward JH, Peppas NA. Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer. 2000;41:6729–39.

    Article  CAS  Google Scholar 

  44. Atta AM, El-Ghazawy RAM. Effect of chemical crosslinking on swelling parameters of modified poly(vinyl alcohol) hydrogel. Int J Polym Mater. 2003;52:623–36.

    Article  CAS  Google Scholar 

  45. Yiamsawas D, Kangwansupamonkon W, Chailapakul O, Kiatkamjornwong S. Synthesis and swelling properties of poly[acrylamide-co-(crotonic acid)] superabsorbents. React Funct Polym. 2007;67:865–82.

    Article  CAS  Google Scholar 

  46. Pourjavadi A, Hosseinzadeh H, Mazidi R. Modified carrageenan. 4. Synthesis and swelling behavior of crosslinked κC-g-AMPS superabsorbent hydrogel with antisalt and pH-responsiveness properties. J Appl Polym Sci. 2005;98:255–63.

  47. Bajpai SK, Singh S. Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water uptake. React Funct Polym. 2006;66:431–40.

    Article  CAS  Google Scholar 

  48. Kim SJ, Shin SR, Kim NG, Kim SI. Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide). J Macromol Sci Part A. 2005;42:1073–83.

    Article  Google Scholar 

  49. Risbud MV, Bhat SV. Properties of polyvinyl pyrrolidone/β-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. J Mater Sci Mater Med. 2001;12:75–9.

    Article  CAS  Google Scholar 

  50. Ekici S, Saraydin D. Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release. Drug Deliv. 2004;11:381–8.

    Article  CAS  Google Scholar 

  51. Pintoa S, Alvesa P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Coll Surf B. 2010;81:20–6.

    Article  Google Scholar 

  52. Pal K, Banthia AK, Majumdar DK. Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing. J Mater Sci Mater Med. 2007;18:1889–94.

    Article  CAS  Google Scholar 

  53. Mishra A, Chaudhary N. Study of povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artif Organs. 2010;23(3):122–8.

    Google Scholar 

Download references

Acknowledgments

Authors wish to thanks the University Grant Commission-New Delhi–India for providing the financial assistance for this work (UGC Sponsored Project [F. No. 33-273/2007 (SR)], dated 28th February 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Lal, H., Pal, L. et al. In vitro release profile of anti-ulcer drug rabeprazole from biocompatible psyllium-PVA hydrogels. J Mater Sci: Mater Med 23, 1021–1032 (2012). https://doi.org/10.1007/s10856-012-4582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4582-x

Keywords

Navigation