Skip to main content
Log in

Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The drug release characteristics of calcium alginate hydrogels, (Ca-Alg), under an electric field assisted transdermal drug delivery system were systematically investigated. The Ca-Alg hydrogels were prepared by the solution-casting using CaCl2 as a crosslinking agent. The diffusion coefficients and the release mechanism of the anionic model drugs, benzoic acid and tannic acid, and a cationic model drug, folic acid on the Ca-Alg hydrogels were determined and investigated using a modified Franz-Diffusion cell in an MES buffer solution of pH 5.5, at a temperature of 37°C, for 48 h. The influences of the crosslinking ratio, —the mole of the crosslinking agent to the mole of the alginate monomer—mesh size, model drug size, drug charge, electric field strength, and electrode polarity were systematically studied. The drug diffusion coefficient decreased with an increasing crosslinking ratio and drug size for all of the model drugs. The drug diffusion coefficient is precisely controlled by an applied electric field and the electrode polarity depending on the drug charge, suitable for a tailor-made transdermal drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gupta P, Vermani K, Grarg S. Hydrogel: from controlled release to pH responsive drug delivery. Drug Discov Today. 2002;7:569–79.

    Article  CAS  Google Scholar 

  2. Kshirsagar NA. Drug delivery system. Indian J Pharmacol. 2000;32:S54–61.

    Google Scholar 

  3. Stott PW, Williams AC, Barry BW. Transdermal drug delivery for eutectic system: enhanced permeation of model drug, ibuprofen. J Control Release. 1998;50:297–308.

    Article  CAS  Google Scholar 

  4. Riviere JE, Papich MG. Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Deliv Rev. 2001;50:175–203.

    Article  CAS  Google Scholar 

  5. Chien YW, Lelawong P, Siddiqui O, Sun Y, Shi WM. Facilitated transdermal delivery device. J Control Release. 1990;13:263–78.

    Article  CAS  Google Scholar 

  6. Juntanon K, Niamlang S, Rujriravanit R, Sirivat A. Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel. Int J Pharm. 2008;356:1–11.

    Article  CAS  Google Scholar 

  7. Kim JS, Yoon GS, Lee MS, Lee HJ, Kim S. Characteristics of electrical responsive alginate/poly(diallydimethylammonium chloride) IPN hydrogel in HCl solutions. Sensor Actuator. 2003;B96:1–5.

    CAS  Google Scholar 

  8. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321–39.

    Article  CAS  Google Scholar 

  9. Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. Int J Pharm. 2006;3323:34–42.

    Article  Google Scholar 

  10. Badwan AA, Abumalooh A, Sallam E, Abukalaf A, Jawan O. A sustained release drug delivery system using calcium alginate beads. Drug Dev Ind Pharm. 1985;11:239–56.

    Article  CAS  Google Scholar 

  11. Aslani P, Kennedy AR. Studies on diffusion in alginate gels. Ι. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophene. J Control Release. 1996;42:75–82.

    Article  CAS  Google Scholar 

  12. Al-Musa S, Fara AD, Badwan AA. Evaluation of parameters involved in preparation and release of drug loaded in crosslinked matrices of alginate. J Control Release. 1999;57:223–32.

    Article  CAS  Google Scholar 

  13. Gonzalez-Rodriguez ML, Holgado MA, Sanchez-Lafuenete C, Rabasco AM, Fini A. Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm. 2002;232:225–34.

    Article  CAS  Google Scholar 

  14. Mohan N, Nair PD. Novel porous, polysaccharide scaffolds for tissue engineering applications. Trends Biomater Artif Organs 2005;18.

  15. Pathak TS, Kim JS, Lee SJ, Baek DJ, Paeng KJ. Preparation of alginic acid and metal alginate from algae and their comparative study. J Polym Environ. 2008;16:198–204.

    Article  CAS  Google Scholar 

  16. Peppas NA, Wright SL. Drug diffusion and biding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). Eur J Pharm Biopharm. 1998;46:15–29.

    Article  CAS  Google Scholar 

  17. Wells LA. Sheardown H. Eur J Pharm Biopharm: Photosensitive controlled release with polyethylene glycol-anthracene modified alginate; 2011.

    Google Scholar 

  18. Peppas NA, Canal T. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res. 1989;23:1183–93.

    Article  Google Scholar 

  19. Chan AW, Neufeld RJ. Modeling the controlled able pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials. 2009;30:6119–29.

    Article  CAS  Google Scholar 

  20. Peppas NA, Wright SL. Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. Macromolecules. 1996;29:8798–804.

    Article  CAS  Google Scholar 

  21. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymer. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  22. Pradhan R, Budhathoki U, Thapa P. Formulation of once a day controlled release tablet of indomethacin based on HPMC-mannitol. KUSET. 2008;1:55–67.

    Google Scholar 

  23. Higuchi T. Mechanism of sustained-action medication: theoretical analysis of rater of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;2:1145–9.

    Article  Google Scholar 

  24. Reichling J, Landvatter U, Wagner H, Kostka KH, Schaefer UF. In vitro studies on release and human skin permeation of Australian tea tree oil (TTO) from topical formulations. Eur J Pharm Biopharm. 2006;64:222–8.

    Article  CAS  Google Scholar 

  25. Mahmoodi M, Khosroshahi ME, Atyabi F. Laser thrombolysis and in vitro study of tPA release encapsulated by chitosan coated PLGA nanoparticles for AMI. Int J Biol Biomed Eng. 2010;4:35–42.

    Google Scholar 

  26. Prajapati R, Mahajan H, Surana S. PLGA based mucoadhesive microspheres for nasal delivery: in vitro/ex vivo studies. IJNDD. 2011;3:9–16.

    Google Scholar 

  27. Basak SC, Kumar KS, Ramalingam M. Design and release characteristics of sustained release tablet containing metformin HCl. Braz J Pharm Sci. 2008;44:477–83.

    CAS  Google Scholar 

  28. Stockwell AF, Davis SS, Walker SE. In vitro evaluation of alginate gel systems as sustained release drug delivery system. J Control Release. 1986;3:167–75.

    Article  CAS  Google Scholar 

  29. Niamlang S, Sirivat A. Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels. Int J Pharm. 2009;371:126–33.

    Article  CAS  Google Scholar 

  30. Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K. Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int J Pharm. 2009;381:25–33.

    Article  CAS  Google Scholar 

  31. Veronika K, Eugenia K, Marc LM, Svetlana AS. Poly(methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chem Mater. 2006;18:328–36.

    Article  Google Scholar 

  32. Shilpa K, Gareth DR, Jayne L. Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Control Release. 1999;60:355–65.

    Article  Google Scholar 

  33. Sudaxshina M. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92:1–17.

    Article  Google Scholar 

  34. Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J Control Release. 1999;58:21–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to express their thanks for the financial support provided by the Thailand Research Fund (RGJ PHD/0285/2551, and BRG), the Conductive and Electroactive Polymer Research Unit of Chulalongkorn University, the Royal Thai Government, and the Petroleum Petrochemical and Advanced Materials Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuvat Sirivat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradee, N., Sirivat, A., Niamlang, S. et al. Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel. J Mater Sci: Mater Med 23, 999–1010 (2012). https://doi.org/10.1007/s10856-012-4571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4571-0

Keywords

Navigation