Skip to main content
Log in

Target delivery and controlled release of the chemopreventive drug sulindac by using an advanced layered double hydroxide nanomatrix formulation system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Target delivery and controlled release of the chemopreventive drug sulindac that possesses low water solubility present a great challenge for its pharmaceutical industry. Here, we offered an advanced nanomatrix formulation system of sulindac based on layered double hydroxide materials. The X-ray analysis and infrared spectroscopy confirmed the incorporation of sulindac into the gallery of the layered double hydroxides. The incorporation ratios of sulindac were recorded to be 45, 31 and 20 for coprecipitation, anion-exchange and reconstruction techniques, respectively. The scanning electron microscopy showed a nanomatrix-structure of ~50 nm. The release studies of sulindac-nanomatrix showed a 96% controlled release at the small intestine solution during 3 h(s), indicating an enhancement in the dissolution profile of sulindac after the matrix formation. The layered structure of the matrix supplied sulindac with a well-ordered structure and a relatively hydrophobic microenvironment that controlled the guest hydrolysis and reactivity during the release process. The laminar structure of layered double hydroxides offered a safe preservation for sulindac against photodecarboxylation, and enhanced the drug thermal stability from 190 to 230° C. The ionic electrostatic interaction of sulindac through its acidic group with layered double hydroxides demolished the gastrointestinal ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh R, Cadeddu R-P, Frobel J, Wilk CM, Bruns I, Zerbini LF, Prenzel T, Hartwig S, Brunnert D, Schroeder T, et al. The non-steroidal anti-inflammatory drugs sulindac sulfide and diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis. 2011;16:889–901.

    Article  CAS  Google Scholar 

  2. Lee JK, Paine MF, Brouwer KLR. Sulindac and its metabolites inhibit multiple transport proteins in rat and human hepatocytes. J Pharmacol Exp Ther. 2010;334(2):410–8.

    Article  CAS  Google Scholar 

  3. Romeiro NC, Leite RDF, Lima LM, Cardozo SVS, de Miranda ALP, Fraga CAM, Barreiro EJ. Synthesis, pharmacological evaluation and docking studies of new sulindac analogues. Eur J Med Chem. 2009;44:1959–71.

    Article  CAS  Google Scholar 

  4. Zou W, Devi SS, Sparkenbaugh E, Younis HS, Roth RA, Ganey PE. Hepatotoxic interaction of sulindac with lipopolysaccharide: role of the hemostatic system. Toxicol Sci. 2009;108(1):184–93.

    Article  CAS  Google Scholar 

  5. Yasui H, Adachi M, Imai K. Combination of tumor necrosis factor-α with sulindac augments its apoptotic potential and suppresses tumor growth of human carcinoma cells in nude mice. Cancer. 2003;97:1412–20.

    Article  CAS  Google Scholar 

  6. Wang X, Kingsley PJ, Marnett LJ, Eling TE. The role of NAG-1/GDF15 in the inhibition of intestinal polyps in APC/Min mice by sulindac. Cancer Prev Res. 2011;4(1):150–60.

    Article  CAS  Google Scholar 

  7. Meyskens FL, McLaren CE, Pelot D, Brooks SF, Carpenter PM, Hawk E, Kelloff G, Lawson MJ, McCracken J, Albers CG, et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev Res. 2008;1:32–8.

    Article  CAS  Google Scholar 

  8. Mackenzie GG, Ouyang N, Xie G, Vrankova K, Huang L, Sun Y, Komninou D, Kopelovich L, Rigas B. Phospho-sulindac (OXT-328) combined with difluoromethylornithine prevents colon cancer in mice. Cancer Prev Res. 2011;4(7):1052–60.

    Article  CAS  Google Scholar 

  9. Llinas A, Box KJ, Burley JC, Glen RC, Goodman JM. A new method for the reproducible generation of polymorphs: two forms of sulindac with very different solubilities. J Appl Cryst. 2007;40:379–81.

    Article  CAS  Google Scholar 

  10. Moore DE, Ghebremeskel KA, Chen BBC, Wong EYL. Electron transfer processes in the reactivity of nonsteroidal anti-inflammatory drugs in the ground and excited states. Photochem Photobiol. 1998;68(5):685–91.

    Article  CAS  Google Scholar 

  11. Schlansky B, Hwang JH. Prevention of nonsteroidal anti-inflammatory drug-induced gastropathy. J Gastroenterol. 2009;44:44–52.

    Article  CAS  Google Scholar 

  12. Hezave AZ, Esmaeilzadeh F. Crystallization of micro particles of sulindac using rapid expansion of supercritical solution. J Cryst Growth. 2010;312:3373–83.

    Article  Google Scholar 

  13. Tros de Ilarduya MC, Martín C, Goni MM, Martínez-Ohárriz MC. Solubilization and interaction of sulindac with polyvinylpyrrolidone K30 in the solid state and in aqueous solution. Drug Dev Ind Pharm. 1998; 24(3): 295-300.

    Google Scholar 

  14. Tros de Ilarduya MC, Martín C, Goni MM, Martínez-Ohárriz MC. Solubilization and interaction of sulindac with beta-cyclodextrin in the solid state and in aqueous solution. Drug Dev Ind Pharm. 1998; 24(3): 301-306.

    Google Scholar 

  15. Yuksel N, Karatas A, Ozkan Y, Savaser A, Ozkanc SA, Baykara T. Enhanced bioavailability of piroxicam using gelucire 44/14 and labrasol: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2003;56:453–9.

    Article  CAS  Google Scholar 

  16. Bingxin L, Jing H, Evans DG, Xue D. Inorganic layered double hydroxides as a drug delivery system: intercalation and in vitro release of fenbufen. Appl Clay Sci. 2004;27:199–207.

    Article  Google Scholar 

  17. Silion M, Hritcu D, Jaba IM, Tamba B, Ionescu D, Mungiu OC, Popa IM. In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides. J Mater Sci Mater Med. 2010;21:3009–18.

    Article  CAS  Google Scholar 

  18. Cao F, Wang Y, Ping Q, Liao Z. Zn–Al–NO3-layered double hydroxides with intercalated diclofenac for ocular delivery. Int J Pharm. 2011;404:250–6.

    Article  CAS  Google Scholar 

  19. Choi S-J, Choi GE, Oh J-M, Oh Y-J, Park M-C, Choy J-H. Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J Mater Chem. 2010;20:9463–9.

    Article  CAS  Google Scholar 

  20. Li B, He J, Evans DG, Duan X. Morphology and size control of Ni–Al layered double hydroxides using chitosan as template. J Phys Chem Solids. 2006;67:1067–70.

    Article  CAS  Google Scholar 

  21. Charradi K, Forano C, Prevot V, Madern D, Haj-Amara AB, Mousty C. Characterization of hemoglobin immobilized in MgAl-layered double hydroxides by the coprecipitation method. Langmuir. 2010;26(12):9997–10004.

    Article  CAS  Google Scholar 

  22. Olfs HW, Torres-Dorante LO, Eckelt R, Kosslick H. Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties. Appl Clay Sci. 2009;43:459–64.

    Article  CAS  Google Scholar 

  23. Valente JS, Lima E, Toledo-Antonio JA, Cortes-Jacome MA, Lartundo-Rojas L, Montiel R, Prince J. Comprehending the thermal decomposition and reconstruction process of sol–gel MgAl layered double hydroxides. J Phys Chem C. 2010;114:2089–99.

    Article  CAS  Google Scholar 

  24. Aisawa S, Higashiyama N, Takahashi S, Hirahara H, Ikematsu D, Kondo H, Nakayama H, Narita E. Intercalation behavior of l-ascorbic acid into layered double hydroxides. Appl Clay Sci. 2007;35:146–54.

    Article  CAS  Google Scholar 

  25. Costantino U, Ambrogi V, Nocchetti M, Perioli L. Hydrotalcite-like compounds: versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mat. 2008;107:149–60.

    Article  CAS  Google Scholar 

  26. Vatier J, Sekera EM, Vitre MT, Mignon M. An artificial stomach–duodenum model for the in vitro evaluation of antacids. Aliment Pharmacol Ther. 1992;6:447–58.

    Article  CAS  Google Scholar 

  27. Kovar P, Pospisil M, Kafunkova E, Lang K, Kovanda F. Mg–Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. J Mol Model. 2010;16:223–33.

    Article  CAS  Google Scholar 

  28. Chen C, Gunawan P, Xu R. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water. J Mater Chem. 2011;21:1218–25.

    Article  CAS  Google Scholar 

  29. Pisson J, Morel-Desrosiers N, Morel JP, de Roy A, Leroux F, Taviot-Gueho C, Malfreyt P. Tracking the structural dynamics of hybrid layered double hydroxides. Chem Mater. 2011;23:1482–90.

    CAS  Google Scholar 

  30. Lin Y, Wang J, Evans DG, Li D. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin. J Phys Chem Solids. 2006;67:998–1001.

    Article  CAS  Google Scholar 

  31. Olanrewaju J, Newalkar BL, Mancino C, Komarneni S. Simplified synthesis of nitrate form of layered double hydroxide. Mater Lett. 2000;45(6):307–10.

    Article  CAS  Google Scholar 

  32. Tao Q, Reddy BJ, He H, Frost RL, Yuan P, Zhu J. Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co. Mater Chem Phys. 2008;112:869–75.

    Article  CAS  Google Scholar 

  33. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed. 2008;47:1382–95.

    Article  CAS  Google Scholar 

  34. Nakayama H, Hatakeyama A, Tsuhako M. Encapsulation of nucleotides and DNA into Mg–Al layered double hydroxide. Int J Pharm. 2010;393:104–11.

    Article  CAS  Google Scholar 

  35. Xu ZP, Lu GQ. Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure Appl Chem. 2006;78(9):1771–9.

    Article  CAS  Google Scholar 

  36. Del Hoyo C. Layered double hydroxides and human health: An overview. Appl Clay Sci. 2007;36:103–21.

    Article  Google Scholar 

  37. Reid JM, Mandrekar SJ, Carlson EC, Harmsen WS, Green EM, McGovern RM, Szabo E, Ames MM, Boring D, Limburg PJ. Comparative bioavailability of sulindac in capsule and tablet formulations. Cancer Epidemiol Biomarkers Prev. 2008;17(3):674–9.

    Article  CAS  Google Scholar 

  38. Davies NM, Watson MS. Clinical pharmacokinetics of sulindac: a dynamic old drug. Clin Pharmacokinet. 1997;32:437–59.

    Article  CAS  Google Scholar 

  39. Piazza GA, Keeton AB, Tinsley HN, Gary BD, Whitt JD, Mathew B, Thaiparambil J, Coward L, Gorman G, Li Y, et al. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res. 2009;2(6):572–80.

    Article  CAS  Google Scholar 

  40. Kaneyoshi M, Jones W. Exchange of interlayer terephthalate anions from a Mg–Al layered double hydroxide: formation of intermediate interstratified phases. Chem Phys Lett. 1998;296:183–7.

    Article  CAS  Google Scholar 

  41. Prasanna SV, Kamath PV. Anion-exchange reactions of layered double hydroxides: interplay between coulombic and H-bonding interactions. Ind Eng Chem Res. 2009;48:6315–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keiji Minagawa or Mohamed R. Berber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minagawa, K., Berber, M.R., Hafez, I.H. et al. Target delivery and controlled release of the chemopreventive drug sulindac by using an advanced layered double hydroxide nanomatrix formulation system. J Mater Sci: Mater Med 23, 973–981 (2012). https://doi.org/10.1007/s10856-012-4566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4566-x

Keywords

Navigation