Skip to main content

Advertisement

Log in

Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aimed to investigate the feasibility of the nanostructured 3D poly(lactide-co-glycolide) (PLGA) constructs, which are loaded with dexamethasone (DEX) and growth factor embedded heparin/poly(L-lysine) nanoparticles via a layer-by-layer system, to serve as an effective scaffold for nucleus pulposus (NP) tissue engineering. Our results demonstrated that the microsphere constructs were capable of simultaneously releasing basic fibroblast growth factor and DEX with approximately zero order kinetics. The dual bead microspheres showed no cytotoxicity, and promoted the proliferation of the rat mesenchymal stem cells (rMSCs) by lactate dehydrogenase assay and CCK-8 assay. After 4 weeks of cultivation in vitro, the rMSCs-scaffold hybrids contained significantly higher levels of sulfated GAG/DNA and collagen type II than the control samples. Moreover, quantitative real time PCR analysis revealed that the expression of disc-matrix proteins including collagen type II, aggrecan, and versican in the rMSCs-scaffold hybrids was significantly higher than that in the control group, whereas the expression of osteogenic differentiation marker (collagen type I) was decreased. Taken together, these data indicate that Dex/bFGF PLGA microspheres could be used as a scaffold to improve the rMSCs growth and differentiating into NP like cells, and reduce the inflammatory response for IVD tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnstone B, Urban JP, Roberts S, Menage J. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Spine (Phila Pa 1976). 1992;17:412–6.

    Article  CAS  Google Scholar 

  2. Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A. Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976). 2000;25:487–92.

    Article  CAS  Google Scholar 

  3. Walker MH, Anderson DG. Molecular basis of intervertebral disc degeneration. Spine J. 2004;4:158S–66S.

    Article  Google Scholar 

  4. Silva P, Crozier S, Veidt M, Pearcy MJ. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression. J Mater Sci Mater Med. 2005;16:663–9.

    Article  CAS  Google Scholar 

  5. Costa F, Sassi M, Ortolina A, Cardia A, Assietti R, Zerbi A, et al. Stand-alone cage for posterior lumbar interbody fusion in the treatment of high-degree degenerative disc disease: design of a new device for an “old” technique. A prospective study on a series of 116 patients. Eur Spine J. 2011;20(Suppl 1):S46–56.

    Article  Google Scholar 

  6. Thompson JP, Oegema TR Jr, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976). 1991;16:253–60.

    Article  CAS  Google Scholar 

  7. Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr. Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res. 1997;235:13–21.

    Article  CAS  Google Scholar 

  8. Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, et al. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res. 2003;21:922–30.

    Article  CAS  Google Scholar 

  9. Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, et al. Effects of growth differentiation factor-5 on the intervertebral disc—in vitro bovine study and in vivo rabbit disc degeneration model study. Spine (Phila Pa 1976). 2006;31:2909–17.

    Article  Google Scholar 

  10. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, et al. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976). 2005;30:25–31; discussion-2.

  11. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, et al. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976). 2006;31:742–54.

    Article  Google Scholar 

  12. Walsh AJ, Bradford DS, Lotz JC. In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976). 2004;29:156–63.

    Article  Google Scholar 

  13. Kim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. Tissue Eng. 2007;13:965–73.

    Article  CAS  Google Scholar 

  14. Lee ES, Park KH, Kang D, Park IS, Min HY, Lee DH, et al. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres. Biomaterials. 2007;28:2754–62.

    Article  CAS  Google Scholar 

  15. Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc. 2007;129:3333–8.

    Article  CAS  Google Scholar 

  16. Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, et al. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng. 2006;12:821–30.

    Article  CAS  Google Scholar 

  17. Kashiwagi N, Suzuki S, Seto Y, Futami T. Bilateral humeral lengthening in achondroplasia. Clin Orthop Relat Res. 2001;391:251–7.

    Article  Google Scholar 

  18. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.

    Article  CAS  Google Scholar 

  19. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994;212:97–104.

    Article  CAS  Google Scholar 

  20. Stokes DG, Liu G, Dharmavaram R, Hawkins D, Piera-Velazquez S, Jimenez SA. Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem J. 2001;360:461–70.

    Article  CAS  Google Scholar 

  21. Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun. 2006;345:631–7.

    Article  CAS  Google Scholar 

  22. Choi YS, Park SN, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials. 2005;26:5855–63.

    Article  CAS  Google Scholar 

  23. Kim M, Choi YS, Yang SH, Hong HN, Cho SW, Cha SM, et al. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem Biophys Res Commun. 2006;348:386–92.

    Article  CAS  Google Scholar 

  24. Newman KD, McBurney MW. Poly(d, l lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials. 2004;25:5763–71.

    Article  CAS  Google Scholar 

  25. Mirkin CA. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem. 2000;39:2258–72.

    Article  CAS  Google Scholar 

  26. Collier CP, Vossmeyer T, Heath JR. Nanocrystal superlattices. Annu Rev Phys Chem. 1998;49:371–404.

    Article  CAS  Google Scholar 

  27. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc. 2007;129:7228–9.

    Article  CAS  Google Scholar 

  28. Hickey T, Kreutzer D, Burgess DJ, Moussy F. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res. 2002;61:180–7.

    Article  CAS  Google Scholar 

  29. Sekiya I, Koopman P, Tsuji K, Mertin S, Harley V, Yamada Y, et al. Dexamethasone enhances SOX9 expression in chondrocytes. J Endocrinol. 2001;169:573–9.

    Article  CAS  Google Scholar 

  30. Takano T, Takigawa M, Suzuki F. Stimulation by glucocorticoids of the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. J Biochem. 1985;97:1093–100.

    CAS  Google Scholar 

  31. Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells. 2006;24:1487–95.

    Article  CAS  Google Scholar 

  32. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil. 2005;13:845–53.

    Article  Google Scholar 

  33. Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release. 2009;133:37–43.

    Article  CAS  Google Scholar 

  34. Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther. 2001;3:857–66.

    Article  CAS  Google Scholar 

  35. Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng. 2007;13:619–27.

    Article  CAS  Google Scholar 

  36. Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells. 2005;23:1579–88.

    Article  Google Scholar 

  37. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials. 2006;27:4573–80.

    Article  CAS  Google Scholar 

  38. Wang Q, Wang J, Lu Q, Detamore MS, Berkland C. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials. 2010;31:4980–6.

    Article  CAS  Google Scholar 

  39. Siemionow K, An H, Masuda K, Andersson G, Cs-Szabo G. The effects of age, gender, ethnicity, and spinal level on the rate of intervertebral disc degeneration. A review of 1712 intervertebral discs. Spine (Phila Pa 1976). 2011;36:1333–9.

    Article  Google Scholar 

Download references

Acknowledgment

Supported by the National Nature Science Foundation of China (81171756) and Science and Technology Planning Project of Zhejiang Province (2009C33093), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. X. Chen.

Additional information

H. Li contributed equally to the article with the first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, C.Z., Li, H., Tao, Y.Q. et al. Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration. J Mater Sci: Mater Med 23, 1097–1107 (2012). https://doi.org/10.1007/s10856-012-4563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4563-0

Keywords

Navigation