Skip to main content

Advertisement

Log in

In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC ® /CaCO 3 /HAP-200 composite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Coralline calcium-hydroxyapatite and calcium carbonate from Porites Porites coral were added to a polymeric matrix based on polyvinyl acetate (POVIAC®), to obtain a novel bone substitute composite as well as a system for the controlled drug (cephalexin) release. Composite samples with different compositions were characterized by physical–chemical and mechanical methods. Furthermore, the in vitro release profile of cephalexin and the kinetic behavior of its release from these composites were analyzed by appropriate mathematical models. It was shown that there is no chemical interaction between the inorganic filler and the polymer matrix, each conserving the original properties of the raw materials. The compressive mechanical strength and Young modulus of the composite with 17.5% of POVIAC®, has better mechanical properties than those of cancellous bone. The variation of POVIAC® content can affect the cephalexin release kinetic in the composite. The cephalexin release mechanism from the composites can be considered as the result of the joint contribution of a prevailing Fickian diffusion and of polymer chain relaxation. It was also demonstrated that cephalexin is occluded inside the composites and not on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  2. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    CAS  Google Scholar 

  3. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  4. Ogiso M. Reassessment of long-term use of dense HA as dental implant: case report. J Biomed Mater Res. 1998;43:318–20.

    Article  CAS  Google Scholar 

  5. Miyamato Y, Shikawa KI. Basic properties of calcium phosphatecement containing atelocollagen in its liquid or powder phases. Biomaterials. 1998;19:707–15.

    Article  Google Scholar 

  6. Itoh S, Kikuchi M, Takakuda K, Nagaoka K, Koyama Y, Tanaka J, et al. Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res. 2002;63:507–15.

    Article  CAS  Google Scholar 

  7. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials. 2002;23:3227–34.

    Article  CAS  Google Scholar 

  8. Murugan R, Panduranga Rao K. Biodegradable coralline hydroxyapatite composite gel using natural alginate. Key Eng Mater. 2003;240–242:407–10.

    Article  Google Scholar 

  9. Wang X, Li Y, Wei J, De Groot K. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002;23:4787–91.

    Article  CAS  Google Scholar 

  10. Murugan R, Rao KP. Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J Biomater Sci Polym Ed. 2003;14:457–68.

    Article  CAS  Google Scholar 

  11. Murugan R, Panduranga Rao K. Grafting of glycidyl methacrylate upon coralline hydroxyapatite in conjugation with demineralized bone matrix using redox initiating system. Macromol Res. 2003;11:14–8.

    Article  CAS  Google Scholar 

  12. Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829–35.

    Article  CAS  Google Scholar 

  13. Suzarte A, Jordán G, Echevarría M, Iglesias G, Díaz E. Procedures for obtaining polymers derived from vinyl acetate and their uses. United State Patent No. 0306226, 2009. [on-line]. Available from: http://www.freepatentsonline.com/y2009/0306226.html. Access in May 2011.

  14. Soundrapandian C, Datta S, Sa B. Drug-eluting implants for osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2007;24:493–545.

    CAS  Google Scholar 

  15. Chen L, Wang H, Wang J, Chen M, Shang L. Ofloxacin-delivery system of a polyanhydride and polylactide blend used in the treatment of bone infection. J Biomed Mater Res B Appl Biomater. 2007;83:589–95.

    Google Scholar 

  16. Joosten U, Joist A, Frebel T, Brandt B, Diederichs S, Von Eiff C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials. 2004;25:4287–95.

    Article  CAS  Google Scholar 

  17. Nandi SK, Kundu B, Ghosh SK, De DK, Basu D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci. 2008;9:183–91.

    Article  Google Scholar 

  18. Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater. 2008;86:217–27.

    Google Scholar 

  19. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Eng C. 2009;29:2478–85.

    Article  CAS  Google Scholar 

  20. Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res. 1971;5:161–229. doi:10.1002/jbm.820050613.

    Article  Google Scholar 

  21. de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics. Vol. 2: calcium phosphate and hydroxylapatite ceramics. Boca Raton: CRC Press; 1990. p. 3–16.

    Google Scholar 

  22. White EW, Weber JN, Roy DM, Owen EL, Chiroff RT, White RA. Replamineform porous biomaterials for hard tissue implant applications. J Biomed Mater Res. 1975;9:23–7.

    Article  CAS  Google Scholar 

  23. Hulbert SF, Morrison SJ, Klawitter JJ. Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res. 1972;6:347–74.

    Article  CAS  Google Scholar 

  24. Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Sci Tech Adv Mater. 2007;8:116–23.

    Article  CAS  Google Scholar 

  25. Kundu B, Lemos A, Soundrapandian C, Sen PS, Datta S, Ferreira JMF, et al. Development of porous HAp and b-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J Mater Sci Mater Med. 2010;21:2955–69.

    Article  CAS  Google Scholar 

  26. Hughes SPF, Nixon J, Dash CV. Cephalexin in chronic osteomyelitis. J R Coll Surg Edinb. 1981;26:335–9.

    CAS  Google Scholar 

  27. Cabassu J, Moissonnier P. Surgical treatment of a vertebra fracture associated with a haematohenous osteomyeltis in a dog. Vet Comp Orthop Traumatol. 2007;20:227–30.

    CAS  Google Scholar 

  28. Wittmann DH. Chemotherapeutic principles of difficult-to-treat infections in surgery: II. Bone and joint infections. Infection. 1980;8:330–3.

    Article  Google Scholar 

  29. Yoshiba K, Yoshiba N, Iwaku M. Effects of antibacterial capping agents on dental pulps of monkeys mechanically exposed to oral microflora. J Endod. 1995;21:16–20.

    Article  CAS  Google Scholar 

  30. Ethell MT, Bennett RA, Brown MP, Merritt K, Davidson JS, Tran T. In vitro elution of gentamicin, amikacin and ceftiofur from polymethylmethacrylate and hydroxyapatite cement. Vet Surg. 2000;29:375–82.

    Article  CAS  Google Scholar 

  31. Otsuka M. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. III. The in vitro drug release from bone cement containing indomethacin and its physicochemical properties. J Contr Release. 1994;31:111–9.

    Article  CAS  Google Scholar 

  32. Hesaraki S, Nemati R. Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater. 2009;89B:342–352.

    Google Scholar 

  33. Doadrio JC, Arcos D, Cabanas MV, Vallet-Regi M. Calcium sulfate-based cements containing cephalexin. Biomaterials. 2004;25:2629–35.

    Article  CAS  Google Scholar 

  34. Rauschmann MA, Wichelhaus TA, Strinal V, Dingeldein E, Zichner L, Schnettler R, et al. Nanocrystalline hydroxyapatite and calcium sulfate ac biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26:2677–84.

    Article  CAS  Google Scholar 

  35. Hesaraki S, Moztarzadeh F, Nemati R, Nezafati N. Preparation and characterization of calcium sulfate–biomimetic apatite nanocomposites for controlled release of antibiotics. J Biomed Mater Res B Appl Biomater. 2009;91:651–61.

    Google Scholar 

  36. Yu D, Wong J, Matsuda Y, Fox JL, Higuchi WI, Otsuka M. Self-setting hydroxyapatite cement: a novel skeletal drug delivery system for antibiotics. J Pharm Sci. 1992;81:529–31.

    Article  CAS  Google Scholar 

  37. Otsuka M, Matsuda Y, Yu D, Wong J, Fox JL, Higuchi WI. A novel skeletal drug delivery system for anti-bacterial drugs using self-setting hydroxyapatite cement. Chem Pharm Bull. 1990;38:3500–2.

    Article  CAS  Google Scholar 

  38. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drug dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  Google Scholar 

  39. Castro H, Ledea O. Determinación de la bioactividad y la resistencia a la compresión de bloques de POLIAPATITA®. Química Nova. 2010;33:891–894. Available from: http://www.scielo.br/pdf/qn/v33n4/24.pdf Access in May 2011.

  40. Aragón J, González R, Nayrim B, Oliver L. Estudio cinético de liberación in vitro en un biomaterial compuesto por HAP-200/POVIAC/CaCO3. Rev Iberoam Polim. 2009;10:119–30.

    Google Scholar 

  41. Aragón J, González R, Fuentes G, Palin L, Croce G, Viterbo D. Characterization of novel controlled release system of cephalexin from polyvinyl acetate/CaCO3/coralline hydroxyapatite composite. Sci Eng Compos Mater. 2010;17:173–82.

    Article  Google Scholar 

  42. Aragón J, González R, Fuentes G, Palin L, Croce G, Viterbo D. Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite. Mater Res. 2011;14:25–30.

    Article  Google Scholar 

  43. González R, Handal E, Fernández J. Cinética de la reacción de transformación hidrotérmica del coral a hidroxiapatita. Quim Nova. 1993;16:513–6.

    Google Scholar 

  44. Blardoni F, Maestre H, González R. Coral bioimplants orthopedic. Bioceramics. 1998;11:599–602.

    Google Scholar 

  45. González R, Blardoni F, Maestre H, Pereda O, Pancorbo E, Ciénaga M. Long term results of the coraline porous hydroxyapatite HAP-200 as bone implant biomaterial in orthopedics and traumatology. Revista CENIC Ciencias Biológicas. 2000;32:97–101.

    Google Scholar 

  46. Wikesjo UM, Lim WH, Razi SS, Sigurdsson TJ, Lee MB, Tatakis DN, et al. Periodontal repair in dogs: a bioabsorbable calcium carbonate coral implant enhances space provision for alveolar bone regeneration in conjunction with guided tissue regeneration. J Periodontol. 2003;74:957–64.

    Article  Google Scholar 

  47. Paul W, Sharma CP. Ceramic drug delivery: a perspective. J Biomater Appl. 2003;17:253–63.

    Article  CAS  Google Scholar 

  48. Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res. 1989;23:765–79.

    Article  CAS  Google Scholar 

  49. Green D, Walsh D, Yang X, Mann S, Oreffo ROC. Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem. 2004;14:2206–12.

    Article  CAS  Google Scholar 

  50. Green DW, Bolland BJRF, Kanczler JM, Lanham SA, Walsh D, Mann S, et al. Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere biocomposites. Biomaterials. 2009;30:1918–27.

    Article  CAS  Google Scholar 

  51. Gonzalez GA, Heinämäki J, Mirza S, Antikainen O, Iraizoz A, Suzarte A, et al. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur J Pharm Biopharm. 2005;59:343–50.

    Article  Google Scholar 

  52. Rafferty DW, Koenig JL. Diffusion of binary non-solvent mixtures in polymers: aqueous ethanol solutions in poly(vinyl acetate). Appl Spectros. 2002;56:1245–50.

    Article  CAS  Google Scholar 

  53. Mallapragada SK. McCarthy-Schroeder poly(vinyl alcohol) as a drug delivery carrier. In: Wise DL, editors. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000. pp. 31–47.

  54. Schmidt WG, Mehnert W, Fromming KH. Controlled release from spherical matrices prepared in a laboratory scale rotor-granulator—release mechanism interpretation using individual pellet data. Eur J Pharm Biopharm. 1996;42:348–50.

    CAS  Google Scholar 

  55. Zhang F, McGinity JW. Properties of holt-melt extruded theophylline tablets containing poly (vinylacetate). Drug Dev Ind Pharm. 2000;26:931–42.

    Article  CAS  Google Scholar 

  56. Ali A, Sharma SN. Sustained release through coated microparticles of nifedipine. Indian Drugs. 1996;33:30–5.

    CAS  Google Scholar 

  57. Niwa T, Takeuchi H, Hino T, Itoh A, Kawashima Y, Kiuchi K. Preparation of agglomerated crystals for direct tableting and microencapsulation by spherical crystallization technique with a continuous system. Pharm Res. 1994;11:478–84.

    Article  CAS  Google Scholar 

  58. Diaz Polanco I, Gil Apán JM, Suzarte A. Evaluation of a polyvinil acetate granulate as new excipient for direct compression | [Evaluación de un granulado de acetato de polivinilo como nuevo excipiente para compresión directa]. Lat Am J Pharm. 2008;27:548–52.

    Google Scholar 

  59. Korsmeyer RW, Peppas NA. Swelling-controlled delivery systems for pharmaceutical application: macromolecular and modeling consideration. In: Roseman JT, Mansdorf SZ, editors. Controlled release delivery systems. New York: Marcel Dekker; 1983. p. 77–9.

    Google Scholar 

  60. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  61. Lindner W, Lippold B. Drug release from hydrocolloid embedding with high or low susceptibility to hydrodynamic stress. Pharm Res. 1995;12:1781–5.

    Article  CAS  Google Scholar 

  62. Ritger PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable device. J Contr Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  63. Yamoaka K, Nakagawa T, Uno T. Application of the akaike information criterion (AIC) in the evaluation of linear pharmacokinetics equations. J Pharmacokinet Biopharm. 1978;6:165–75.

    Article  Google Scholar 

  64. Hughes JM, Cameron M, Crowley KD. Structural variations in natural F, OH, and Cl apatites. Am Mineral. 1989;74:870–6.

    CAS  Google Scholar 

  65. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

    Article  CAS  Google Scholar 

  66. Penel G, Leroy G, Rey C, Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int. 1998;63:475–81.

    Article  CAS  Google Scholar 

  67. Markgraf SA, Reeder RJ. High-temperature structure refinements of calcite and magnesite. Am Mineral. 1985;70:590–600.

    CAS  Google Scholar 

  68. Dal Negro A, Ungaretti L. Refinement of the crystal structure of aragonite. Am Mineral. 1971;56:768–72.

    CAS  Google Scholar 

  69. Behens G, Kuhn LT, Ubic R, Heuer AH. Raman spectra of vateritic calcium carbonate. Spectros Lett. 1995;28:983–95.

    Article  Google Scholar 

  70. Zhou GT, Yao QZ, Ni J, Jin G. Formation of aragonite mesocrystals and implication for biomineralization. Am Mineral. 2009;94:293–302.

    Article  CAS  Google Scholar 

  71. Tunusoglu Ö, Shahwan T, Eroglu AE. Retention of aqueous Ba2+ ions by calcite and aragonite over a wide range of concentrations: characterization of the uptake capacity, and kinetics of sorption and precipitate formation. Geochem J. 2007;41:379–89.

    Article  CAS  Google Scholar 

  72. Anderson A. Group theoretical analysis of the ν1 (CO3 2-) vibration in crystalline calcium carbonate. Spectros Lett. 1996;29:819–25.

    Article  CAS  Google Scholar 

  73. Ramdas AK. The infra-red absorption spectra of sodium nitrate and calcite. Proc Indian Acad Sci. 1953;37:441–50.

    Google Scholar 

  74. Kontoyannis CG, Vagenas NV. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst. 2000;125:251–5.

    Article  CAS  Google Scholar 

  75. Tomic Z, Makreski P, Gajic B. Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction. J Raman Spectros. 2010;41:582–6.

    Article  CAS  Google Scholar 

  76. Arias JL, Gómez-Gallo A, Delgado AV, Gallardo V. Study of the stability of Kollidon® SR suspensions for pharmaceutical applications. Colloid Surf Physicochem Eng Aspect. 2009;338:107–13.

    Article  CAS  Google Scholar 

  77. Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T. Laser Raman and FTIR studies on Li+ interaction in PVAc-LiClO4 polymer electrolytes. Spectrochim Acta Mol Biomol Spectros. 2006;65:1234–40.

    Article  CAS  Google Scholar 

  78. Mas Haris MRH, Kathiresan S, Mohan S. Normal coordinate analysis of polyvinyl acetate. Asian J Chem. 2008;20:4511–8.

    Google Scholar 

  79. Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Contr Release. 2004;99:127–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank FONDAZIONE ISI and the Association for the Promotion of the Scientific and Technological Development of Piedmont (ASP) for their financial support to this scientific project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Aragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón, J., González, R., Fuentes, G. et al. In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC ® /CaCO 3 /HAP-200 composite. J Mater Sci: Mater Med 23, 259–270 (2012). https://doi.org/10.1007/s10856-011-4514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4514-1

Keywords

Navigation