Skip to main content

Advertisement

Log in

The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, the influence of the morphology of hydroxyapatite particles on silicon substitution through hydrothermal synthesis performed under the same conditions was investigated. Spherical- and whisker-like hydroxyapatite particles were obtained starting from calcium-nitrate, sodium dihydrogen phosphate, disodium-ethylenediaminetetraacetic acid and urea (used only for the synthesis of whisker-like particles) dissolved in aqueous solutions. Silicon was introduced into the solution using tetraethylorthosilicate. X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy indicate that silicon doping induce different phase compositions and bioactivity of spherical- and whisker-like hydroxyapatite particles obtained under the same hydrothermal conditions. Silicon-substituted, spherical hydroxyapatites particles showed greater phase transformation to silicon-substituted α- calcium-phosphate compared with whiskers-like hydroxyapatite particles synthesized with the same amount of added silicon. Metabolic activity assay performed with SaOs2 osteosarcoma cells showed better biocompatibility of annealed biphasic spherical-like particles compared with annealed whiskerlike particles while dried spherical-like particles induce high cytotoxicity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:37–47.

    Article  Google Scholar 

  2. Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 2009;5:1756–66.

    Article  CAS  Google Scholar 

  3. Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry. Amsterdam: Elsevier; 1994.

    Google Scholar 

  4. Dorozhkin SV. Calcium orthophosphates. J Mater Sci. 2007;42:1061–95.

    Article  CAS  Google Scholar 

  5. Best SM, Porter AE, Thian ES, Huang J. Bioceramics: Past, present and for the future. J Eur Ceram Soci. 2008;28:1319–27.

    Article  CAS  Google Scholar 

  6. Ferandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I: Solution chemistry. J Mater Sci: Mater Med. 1999;10:169–76.

    Article  Google Scholar 

  7. Racquel Z, LeGeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J, editors. An Introduction to Bioceramics. Singapore: Word Scientific; 1993. p. 139–80.

    Google Scholar 

  8. Yamada MO, Tohno Y, Tohno S, Utsumi M, Moriwake Y, Yamada G. Silicon compatible with the height of human vertebral column. Biol Trace Elem Res. 2003;95:113–21.

    Article  CAS  Google Scholar 

  9. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25:2111–21.

    Article  CAS  Google Scholar 

  10. Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci Mater Med. 2006;17:997–1002.

    Article  CAS  Google Scholar 

  11. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon- substituted hydroxyapatite J. Biomed Mat Res. 1999;44:422–8.

    Article  CAS  Google Scholar 

  12. Arcos D, Rodrı′guez-Carvajal J, Vallet-Regi M. Silicon Incorporation in Hydroxylapatite Obtained by Controlled Crystallization. Chem Mater. 2004;16:2300–8.

    Article  CAS  Google Scholar 

  13. Sayer M, Stratilatov AD, Reid J, Calderin L, Stott MJ, Yin X, MacKenzie M, Smith TJN, Hendry AJ, Langstaff SD. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials. 2003;24:369–82.

    Article  CAS  Google Scholar 

  14. Balas F, Pérez-Pariente J, Vallet-Regí M. In vitro bioactivity of silicon-substituted hydroxyapatites. J Biomed Mater Res. 2003;66A:364–75.

    Article  CAS  Google Scholar 

  15. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  Google Scholar 

  16. Thian ES, Huang J, Best SM, Barber ZM, Brook A, Rushton N, Bonfield W. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials. 2006;27:2692–8.

    Article  CAS  Google Scholar 

  17. Davies JE., Surface characterization of biomaterials. In: Ratner BD, editor, Amsterdam; Elsevier: 1998. p 219-34.

  18. Ruys AJ. Silicon-doped hydroxyapatite. J Aust Ceram Soc. 1993;29:71–80.

    CAS  Google Scholar 

  19. Tanizawa Y. Suzuki T. Effects of silicate ions on the formation and transformation of calcium phosphates in neutral aqueous solutions J Chem Soc Faraday Trans. 1995;91(19):3499–503.

    CAS  Google Scholar 

  20. Boyer L, Carpena J, Lacout JL. Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ionics. 1997;95:121–9.

    Article  CAS  Google Scholar 

  21. Gibson IR, Huang J, Best SM, Bonfield W. Enhanced In Vitro Cell Activity and Surface Apatite Layer Formation on Novel Silicon-Substituted Hydroxyapatites. Bioceramics. 1999;12:191–4.

    CAS  Google Scholar 

  22. Aizawa M, Patel N, Porter AE, Best SM, Bonfield W. Syntheses of Silicon-Containing Apatite Fibres by a Homogeneous Precipitation Method and Their Characterization. Key Eng Mater. 2006;309–311:1129–32.

    Article  Google Scholar 

  23. Wei X, Akinc M. Si, Zn-modified tricalcium phosphates: a Phase composition and crystal structure study. Key Eng Mater. 2005;284–286:83–6.

    Article  Google Scholar 

  24. Langstaff S, Sayer M, Smith TJN, Pugh SM, Hesp SAM, Thompson WT. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization, Biomaterials. 1999;20:1727–41.

    CAS  Google Scholar 

  25. Janackovic D, Petrovic-Prelevic I, Kostic-Gvozdenovic L, Petrovic R, Jokanovic V, Uskokovic D. Influence of synthesis parameters on the particle sizes of nanostructured calciumhydroxyapatite. Key Eng Mater. 2001;192–195:203–6.

    Article  Google Scholar 

  26. Jokic B, Mitric M, Radmilovic V, Drmanic S, Petrovi R, Janackovic Dj. Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceram Int. 2011;37:167–73.

    Article  CAS  Google Scholar 

  27. Roisnel T, Rodriguez-Carvajal J. WinPLOTR, a Tool to Plot Powder Diffraction Patterns. France: Laboratoire Leon Brillouin (CEA-CNRS); 1998.

    Google Scholar 

  28. G. Nolze, W. Kraus, PowderCell 2.3 Program, BAM Berlin, 2000.

  29. Kay MI, Young RA, Posner AS. Nature. 1964;204:1050–2.

    Article  CAS  Google Scholar 

  30. de Wolff P. Technisch Physische Dienst, Delft, The Netherlands, ICDD Grant-in-Aid, PDF 09-0432.

  31. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  32. Aizawa M, Porter AE, Best SM, Bonfield W. Ultrastructural observation of single-crystal apatite fibres. Biomaterials. 2005;26:3427–33.

    Article  CAS  Google Scholar 

  33. Aizawa M, Ueno H, Itatani K, Okada I. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J Eur Ceram Soc. 2006;26:501–7.

    Article  CAS  Google Scholar 

  34. Tas C. Molten salt synthesis of calcium hydroxyapatite whiskers. J Am Ceram Soc. 2001;84:295–300.

    Article  CAS  Google Scholar 

  35. Gibson IR, Rehman IU, Best SM, Bonfield W. Characterisation of the transformation from Ca-deficient apatite to β-tricalcium phosphate. J Mat Sci Mater in Med. 2000;11:533–9.

    Article  CAS  Google Scholar 

  36. Gibson IR, Best SM, Bonfield W. Chemical Characterisation of Silicon-substituted Hydroxyapatite. J Biomed Mat Res. 1999;44:422–8.

    Article  CAS  Google Scholar 

  37. Jillavenkatesa A, Condrate RA. The infrared and Raman spectra of α- and β-tricalcium phosphate Ca(PO4)2. Spectrosc Lett. 1998;31:1619–1634.

    Article  CAS  Google Scholar 

  38. Hollenstein C, Howling AA, Courteille C, Magni D, Scholz SM, Kroesen GMW, Simons N, de Zeeuw W, Schwarzenbach W. Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry. J Phys D Appl Phys. 1998;31:74–84.

    Article  CAS  Google Scholar 

  39. Brinker CJ, Scherer GW. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. San Diego: Academic Press; 1990.

    Google Scholar 

  40. Borum L, Wilson O. Surface modification of hydroxyapatite.Part II.Silica. Biomaterials. 2003;24:3681–8.

    Article  CAS  Google Scholar 

  41. Landi E, Uggeri J, Sprio S, Tampieri A, Guizzardi S. Human osteoblast behavior on as-synthesized SiO4 and B-CO3 co-substitu. J Biomed Mater Res Part A. 2010;94A:59–70.

    Article  CAS  Google Scholar 

  42. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27:5014–26.

    Article  CAS  Google Scholar 

  43. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res Part A. 2006;79A:723–30.

    Article  CAS  Google Scholar 

  44. Zou S, Ireland D, Brooks RA, Rushton N, Best S. The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res B Appl Biomater. 2009;90:123–30.

    CAS  Google Scholar 

  45. Tuck L, Astala R, Reid JW, Sayer M, Stott MJ. Dissolution and re-crystallization processes in multiphase silicon stabilized tricalcium phosphate. J Mater Sci: Mater Med. 2008;19:917–27.

    Article  CAS  Google Scholar 

  46. Mastrogiacoma M, Corsi A, Francioso E, Di Comite M, Monetti F, Scaglione S. Reconstruction of extensive long bone defects in sheep using resorbable biocermics based on silicon stabilized tricalcium phosphate. Tissue Eng. 2006;12:1261–73.

    Article  Google Scholar 

  47. Ballal NV, Kundabala M, Bhat S, Rao N, Rao BS. A comparative in vitro evaluation of cytotoxic effects of EDTA and maleic acid: Root canal irrigants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:633–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from Ministry of Science and Technological Development Project No. III45019. We thank Dr. Karine Anselme for providing us the SaOs2 osteosarcoma cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jokic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokic, B., Mitric, M., Popovic, M. et al. The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles. J Mater Sci: Mater Med 22, 2175 (2011). https://doi.org/10.1007/s10856-011-4412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4412-6

Keywords

Navigation