Skip to main content

Advertisement

Log in

Characterization of a nanoparticle-filled resin for application in scan-LED-technology

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Scan-LED-technology is a new rapid prototyping technique with increasing applications in the production of custom-made medical products. The present work is dealing with the examination of a silica/urethandimethacrylate (UDMA) nanocomposite for application in scan-LED-technology. The use of specific LED in a photo-DSC unit enables the simulation of crucial parameters of nanoparticle-filled resins for their application in scan-LED-technology. The conversion of double bonds during the curing reaction and the rate of conversion were studied as a function of radiation intensity, silica nanoparticle content, and silanization of the nanoparticles with 3-methacryloyloxypropyl-trimethoxysilane (MPTMS). The conversion of double bonds is increasing with increasing radiation intensity. The increasing conversion of the nanoparticle-filled resins is discussed as a combined effect of increasing nanoparticle content, alternated initiator/double bond ratio and increasing radiation intensity. A significant dependence of the reaction rate on nanoparticle content could not be found. Only for the unfilled resin, the rate was increasing at higher radiation intensities. The influence of residual solvent on conversion and rate of reaction was also analyzed. TGA measurements combined with FTIR were used to study the silanization of the nanoparticles. The silane layer thickness on the surface of the silica nanoparticles was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Klare M, Lindner F, Kanzok B. Wie und wann werden Rapid-Technologien in der Medizintechnik wirtschaftlich? Neue Anwendungen und Verfahren im Dentalbereich. RTejournal—Forum für Rapid Technologie http://wwwrtejournalde/archiv/ausgabe5/1519/ [22032010] 2008;5.

  2. Gischer F, Klare M. Grundlagen von Schichtaufbauverfahren und deren Auswirkungen auf den Dentalmarkt. Quintessenz Zahntechnik. 2009;35(9):1128–40.

    Google Scholar 

  3. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001;26:535–76.

    Article  CAS  Google Scholar 

  4. Gurr M, Hofmann D, Ehm M, Thomann YKR, Mühlhaupt R. Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies. Adv Funct Mater. 2008;18:2390–7.

    Article  CAS  Google Scholar 

  5. Riesen R. Collected applications thermal analysis, thermosets. Mettler-Toledo AG; 2006.

  6. Bandrup J, Immergut E. Polymer handbook. 4th ed. New York: Wiley; 1999.

    Google Scholar 

  7. Cho J-D, Ju H-T, Hong J-W. Photocuring kinetics of UV-initiated free-radiacel photopolymerizations with and without silica nanoparticles. J Polym Sci A Polym Chem. 2005;43:658–70.

    Article  CAS  Google Scholar 

  8. Cho J-D, Ju H-T, Park Y-S, Hong J-W. Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-negative photoresists with and without silica nanoparticles. Macromol Mater Eng. 2006;291:1155–63.

    Article  CAS  Google Scholar 

  9. Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25:1411–8.

    Article  CAS  Google Scholar 

  10. Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003;19:327–33.

    Article  CAS  Google Scholar 

  11. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci. 2001;26:605–65.

    Article  CAS  Google Scholar 

  12. Maffezzoli A, Terzi R. Effect of irradiation intensity on the isothermal photopolymerization kinetics of acrylic resins for stereolithography. Thermochim Acta. 1998;321:111–21.

    Article  CAS  Google Scholar 

  13. Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res. 1999;78(8):1469–76.

    Article  CAS  Google Scholar 

  14. Sideridou ID, Karabela MM. Effect of the amount of 3-methacryloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater. 2009;25(11):1315–24.

    Article  CAS  Google Scholar 

  15. Liu Q, Chambers DE, Debnath S, Wunder SL, Baran GR. Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites. J Biomed Mater Res. 2001;57:384–93.

    Article  CAS  Google Scholar 

  16. Beckmann D. Einfluss unterschiedlicher SiO2-Füllstoffgrößenverteilungen auf die thermischen und mechanischen Eigenschaften lichthärtender. Dentalcomposite Thesis, University of Applied Sciences Osnabrück; 2007.

  17. Debnath S, Wunder SL, McCool JI, Baran GR. Silane treatment effects on glass/resin interfacial shear strengths. Dent Mater. 2003;19:441–8.

    Article  CAS  Google Scholar 

  18. Wilson KS, Zhang K, Antonucci JM. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials. 2005;26:5095–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Philip Hoarau, PHIDIAS Technologies for donating the irradiation source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kummerlöwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, E., Kummerlöwe, C. & Klare, M. Characterization of a nanoparticle-filled resin for application in scan-LED-technology. J Mater Sci: Mater Med 22, 2165 (2011). https://doi.org/10.1007/s10856-011-4411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4411-7

Keywords

Navigation