Skip to main content
Log in

Poly(ε-caprolactone) and poly(d,l-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression–particulate leaching method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous bioresorbable polymers have been widely used as scaffolds in tissue engineering. Most of the bioresorbable scaffolds are aliphatic polyesters and the methods employed to prepare the porous morphology may vary. This work describes and evaluates the in vitro degradation of porous and dense scaffolds of poly(ε-caprolactone) (PCL) and poly(d,l-lactic acid-co-glycolic acid) (50/50) (PLGA50) prepared by particulate leaching-melt compression process. Biological evaluation was carried out using osteoblast cell cultures. The results showed an autocatalytic effect on the dense samples. Osteoblasts presented intermediate adhesion and the cell morphology on the surface of these materials was dispersed, which indicated a good interaction of the cells with the surface and the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gloria A, De Santis R, Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech. 2010;8(2):57–67.

    CAS  Google Scholar 

  2. Vert M. Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. J Mater Sci Mater Med. 2009;20(2):437–46.

    Article  CAS  Google Scholar 

  3. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):263–73.

    Article  CAS  Google Scholar 

  4. Barbanti SH, Santos AR Jr, Zavaglia CAC, Duek EAR. Porous and dense poly(l-lactic acid) and poly(d,l-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. J Mater Sci Mater Med. 2004;15:1315–21.

    Article  CAS  Google Scholar 

  5. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417–22.

    Article  CAS  Google Scholar 

  6. Eldsäter C, Erlandsson B, Renstad R, Albertsson AC, Karlsson S. The biodegradation of amorphous and crystalline regions in film-blown poly(ε-caprolactone). Polymer. 2000;41:1297–304.

    Article  Google Scholar 

  7. Murakami N, Fukuchi S, Takeuchi K, Hori T, Shibamoto S, Ito F. Antagonistic regulation of cell migration by epidermal growth factor and glucocorticoid in human gastric carcinoma cells. J Cell Physiol. 1998;176(1):127–37.

    Article  CAS  Google Scholar 

  8. Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater. 2008;16:80–91.

    CAS  Google Scholar 

  9. Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53.

    Article  CAS  Google Scholar 

  10. Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GRD, Brandt K, Savel T, Gurlek A, Patrick CW, Mikos AG. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 1998;19:1945–55.

    Article  CAS  Google Scholar 

  11. Mikos A, Temenoff J. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3:114–9. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/427. Accessed 24 June 2011.

  12. Plikk P, Målberg S, Albertsson AC. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules. 2009;10(5):1259–64.

    Article  CAS  Google Scholar 

  13. Duek EAR, Zavaglia CAC, Belangero WD. In vitro study of poly(lactic acid) pin degradation. Polymer. 1999;40:6465–73.

    Article  CAS  Google Scholar 

  14. Wu L, Jing D, Ding J. A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials. 2006;27(2):185–91.

    Article  CAS  Google Scholar 

  15. Penco M, Sartore L, Bignotti F, D’antone S, Landro L. Thermal properties of a new class of block copolymers based on segments of poly(d,l-lactic-glycolic acid) and poly(ε-caprolactone). J European Polym. 2000;36:901–8.

    Article  CAS  Google Scholar 

  16. Pietrzak WS, Sarver DR, Verstynen ML. Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg. 1997;8(2):87–91.

    Article  CAS  Google Scholar 

  17. Kim JY, Yoon JJ, Park EK, Kim DS, Kim SY, Cho DW. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Biofabrication. 2009;1(1):015002.

    Article  Google Scholar 

  18. Ren J, Zhao P, Ren T, Gu S, Pan K. Poly (d,l-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med. 2008;19(3):1075–82.

    Article  CAS  Google Scholar 

  19. Santos AR Jr, Barbanti SH, Duek EAR, Dolder H, Wada RS, Wada MLF. Vero cell growth and differentiation on poly(l-lactic acid) membranes of different pore diameters. Artif Organs. 2001;25:7–13.

    Article  CAS  Google Scholar 

  20. Moreira PL, An YH, Santos AR Jr, Genari SC. In vitro analysis of anionic collagen scaffolds for bone repair. J Biomed Mater Res B Appl Biomater. 2004;15:229–37.

    Article  Google Scholar 

  21. Lombello CB, Santos AR Jr, Malmonge SM, Barbanti SH, Wada MLF, Duek EAR. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials. J Mater Sci Mater Med. 2002;13:867–74.

    Article  CAS  Google Scholar 

  22. van Eijk F, Saris DB, Creemers LB, Riesle J, Willems WJ, van Blitterswijk CA, Verbout AJ, Dhert WJ. The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng. 2008;14(8):1425–33.

    Article  Google Scholar 

  23. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2(2–3):81–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (Grant 141582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel H. Barbanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbanti, S.H., Santos, A.R., Zavaglia, C.A.C. et al. Poly(ε-caprolactone) and poly(d,l-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression–particulate leaching method. J Mater Sci: Mater Med 22, 2377 (2011). https://doi.org/10.1007/s10856-011-4398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4398-0

Keywords

Navigation