Skip to main content
Log in

A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recombinant human epidermal growth factor (rhEGF) is known to stimulate cell proliferation and accelerate wound healing. Direct delivery of rhEGF at the wound site in a sustained and controllable way without loss of bioactivity would enhance its biological effects. The aim of this study was to prepare a novel local delivery system for the sustained and controllable release of rhEGF, a fibrin gel loaded with chitosan nanoparticles. First, rhEGF-loaded chitosan nanoparticles were prepared and characterized, and these showed an ability to protect rhEGF from proteolysis. The prepared nanoparticles were then incorporated into a fibrin gel matrix during polymerization. In vitro release studies showed that the fibrin gel loaded with rhEGF/chitosan nanoparticles could achieve a more sustained release of rhEGF than either chitosan nanoparticles or an unloaded fibrin gel. Additionally, the release rate could be controlled by altering the contents of fibrinogen and thrombin in this composite delivery system. The bioactivity of the released rhEGF was determined by assessing its ability to stimulate the proliferation of BALB/c 3T3 cells, and the results showed that rhEGF bioactivity was not affected during the preparation process and could be maintained for at least 7 days. This novel delivery system may have great potential applications in the local administration of rhEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DiBiase MD, Rhodes CT. The design of analytical methods for use in topical epidermal growth factor product development. J Pharm Pharmacol. 1991;43(8):553–8.

    Article  CAS  Google Scholar 

  2. Kitajima T, Sakuragi M, Hasuda H, Ozu T, Ito Y. A chimeric epidermal growth factor with fibrin affinity promotes repair of injured keratinocyte sheets. Acta Biomater. 2009;5(7):2623–32.

    Article  CAS  Google Scholar 

  3. Grazul-Bilska AT, Johnson ML, Bilski JJ, Redmer DA, Reynolds LP, Abdullah A, et al. Wound healing: the role of growth factors. Drugs Today. 2003;39(10):787–800.

    Article  CAS  Google Scholar 

  4. Mössner J, Caca K. Developments in the inhibition of gastric acid secretion. Eur J Clin Invest. 2005;35(8):469–75.

    Article  Google Scholar 

  5. Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7(6):442–52.

    Article  CAS  Google Scholar 

  6. Kim EY, Gao ZG, Park JS, Li H, Han K. rhEGF/HP-[beta]-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm. 2002;233(1–2):159–67.

    Article  CAS  Google Scholar 

  7. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009;5(7):2570–8.

    Article  CAS  Google Scholar 

  8. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  CAS  Google Scholar 

  9. Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009;20(5):1057–79.

    Article  CAS  Google Scholar 

  10. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B. 2010;75(1):1–18.

    Article  CAS  Google Scholar 

  11. Zhang XG, Teng DY, Wu ZM, Wang X, Wang Z, Yu DM, et al. PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release. J Mater Sci Mater Med. 2008;19(12):3525–33.

    Article  CAS  Google Scholar 

  12. Hasanovic A, Zehl M, Reznicek G, Valenta C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol. 2009;61(12):1609–16.

    Article  CAS  Google Scholar 

  13. Sakiyama-Elbert SE, Hubbell JA. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell in growth matrix. J Control Release. 2000;69(1):149–58.

    Article  CAS  Google Scholar 

  14. Kaufman MR, Westreich R, Ammar SM, Amirali A, Iskander A, Lawson W. Autologous cartilage grafts enhanced by a novel transplant medium using fibrin sealant and fibroblast growth factor. Arch Facial Plast Surg. 2004;6(2):94–100.

    Article  Google Scholar 

  15. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release. 2001;72(1–3):101–13.

    Article  CAS  Google Scholar 

  16. Giannoni P, Hunziker EB. Release kinetics of transforming growth factor-beta1 from fibrin clots. Biotechnol Bioeng. 2003;83(1):121–3.

    Article  CAS  Google Scholar 

  17. Gwak SJ, Kim SS, Sung K, Han J, Choi CY, Kim BS. Synergistic effect of keratinocyte transplantation and epidermal growth factor delivery on epidermal regeneration. Cell Transplant. 2005;14(10):809–17.

    Article  Google Scholar 

  18. Briganti E, Spiller D, Mirtelli C, Kull S, Counoupas C, Losi P, et al. A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. J Control Release. 2010;142(1):14–21.

    Article  CAS  Google Scholar 

  19. Park JS, Yoon JI, Li H, Moon DC, Han K. Buccal mucosal ulcer healing effect of rhEGF/Eudispert hv hydrogel. Arch Pharm Res. 2003;26(8):659–65.

    Article  CAS  Google Scholar 

  20. Alemdaroglu C, Degim Z, Celebi N, Zor F, Ozturk S, Erdogan D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006;32(3):319–27.

    Article  Google Scholar 

  21. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835.

    CAS  Google Scholar 

  22. Hardwicke J, Ferguson EL, Moseley R, Stephens P, Thomas DW, Duncan R. Dextrin-rhEGF conjugates as bioresponsive nanomedicines for wound repair. J Control Release. 2008;130(3):275–83.

    Article  CAS  Google Scholar 

  23. Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing–past, present and future perspectives. Surgeon. 2008;6(3):172–7.

    Article  CAS  Google Scholar 

  24. Yang CH, Huang YB, Wu PC, Tsai YH. The evaluation of stability of recombinant human epidermal growth factor in burn-injured pigs. Process Biochem. 2005;40(5):1661–5.

    Article  CAS  Google Scholar 

  25. Buckley A, Davidson JM, Kamerath CD, Woodward SC. Epidermal growth factor increases granulation tissue formation dose dependently. J Surg Res. 1987;43(4):322–8.

    Article  CAS  Google Scholar 

  26. Hori K, Sotozono C, Hamuro J, Yamasaki K, Kimura Y, Ozeki M, et al. Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing. J Control Release. 2007;118(2):169–76.

    Article  CAS  Google Scholar 

  27. Yang CH. Evaluation of the release rate of bioactive recombinant human epidermal growth factor from crosslinking collagen sponges. J Mater Sci Mater Med. 2008;19(3):1433–40.

    Article  CAS  Google Scholar 

  28. Zhang S, Uludag H. Nanoparticulate systems for growth factor delivery. Pharm Res. 2009;26(7):1561–80.

    Article  CAS  Google Scholar 

  29. Schultz CL, Morck DW. Contact lenses as a drug delivery device for epidermal growth factor in the treatment of ocular wounds. Clin Exp Optom. 2010;93(2):61–5.

    Article  Google Scholar 

  30. Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M, et al. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv. 2007;14(8):525–9.

    Article  CAS  Google Scholar 

  31. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.

    Article  CAS  Google Scholar 

  32. Masuoka K, Ishihara M, Asazuma T, Hattori H, Matsui T, Takase B, et al. The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials. 2005;26(16):3277–84.

    Article  CAS  Google Scholar 

  33. Zhou S, Deng X, Li X. Investigation on a novel core-coated microspheres protein delivery system. J Control Release. 2001;75(1–2):27–36.

    Article  CAS  Google Scholar 

  34. Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release. 2010;148(1):49–55.

    Article  CAS  Google Scholar 

  35. Jeon O, Ryu SH, Chung JH, Kim BS. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release. 2005;105(3):249–59.

    Article  CAS  Google Scholar 

  36. Lee SB, Geroski DH, Prausnitz MR, Edelhauser HF. Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res. 2004;78(3):599–607.

    Article  CAS  Google Scholar 

  37. Sekiyama E, Nakamura T, Kurihara E, Cooper LJ, Fullwood NJ, Takaoka M, et al. Novel sutureless transplantation of bioadhesive-coated, freeze-dried amniotic membrane for ocular surface reconstruction. Invest Ophthalmol Vis Sci. 2007;48(4):1528–34.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chongqing Science and Technology Committee (CSTC, 2008AC0086) and the First Affiliated Hospital of Chongqing Medical University (YXJJ2009-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Zhao, M., Zhao, Y. et al. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies. J Mater Sci: Mater Med 22, 1221–1230 (2011). https://doi.org/10.1007/s10856-011-4304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4304-9

Keywords

Navigation