Skip to main content
Log in

Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

COX-2 inhibitors have demonstrated beneficial effects in colorectal cancer. The purpose of this study was to prepare and evaluate the colon specific microspheres of COX-2 inhibitors using valdecoxib as a model drug. Mucoadhesive core microspheres were prepared using chitosan as polymer and entrapped within Eudragit S 100 for colon targeting. FTIR spectrum of selected, coated microspheres showed peaks of valdecoxib at 3377, 3250, 1334 and 1155 cm−1. XRD showed amorphous character and DSC showed depressed broad endotherm of valdecoxib at 169.07°C, which may be attributed to dilution effect by the amorphous polymer. The coated microspheres were spherical with an average size of 90 μm. Storage of the microspheres at 40°C/75% relative humidity for 6 months indicated no significant drug degradation. The coated microspheres did neither release the drug in acidic pH of stomach (pH 1.2) nor in small intestinal pH between 5 to 6.8, and the release started at pH 7.4, indicting perfect colonic delivery. The coated microspheres pretreated with phosphate buffer pH 7.4 for 30 min, when applied to mucosal surface of freshly excised goat colon, showed good mucoadhesion. The drug release at pH 7.4 and good mucoadhesive property of the microspheres make the system ideal for colonic delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tattersal MHN, Thomas H. Recent advances: oncology. Br Med J. 2005;318:445–8.

    Google Scholar 

  2. Pisani P, Bray F, Parkin DM. Estimates of the world wide prevalence of cancer for 25 sites in the adult population. Int J Cancer. 2002;97:72–81.

    Article  CAS  PubMed  Google Scholar 

  3. Kune S, Kune GA, Watson LF. The Melbourne Colorectal Cancer Study: incidence findings by age, sex, site, migrants and religion. Int J Epidemiol. 1986;15:483–93.

    Article  CAS  PubMed  Google Scholar 

  4. Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988;48:4399–404.

    CAS  PubMed  Google Scholar 

  5. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994;121:241–6.

    CAS  PubMed  Google Scholar 

  6. Thun MJ, Namboodiri MM, Health CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Eng J Med. 1991;325:1593–6.

    Article  CAS  Google Scholar 

  7. Craven PA, Thornburg K, DeRubertis FR. Sustained increase in the proliferation of rat colonic mucosa during chronic treatment with aspirin. Gastroenterology. 1988;94:567–75.

    CAS  PubMed  Google Scholar 

  8. Thun MJ, Henley SJ, Patrono C. Non steroidal anti inflammatory drugs as anticancer agents: mechanistic, pharmacologic and clinical issues. J Nat Cancer Inst. 2002;94:252–66.

    CAS  PubMed  Google Scholar 

  9. Chan TA. Non steroidal anti inflammatory drugs, apoptosis and colon cancer chemoprevention. Lancet Oncol. 2002;3:166–74.

    Article  CAS  PubMed  Google Scholar 

  10. Finckh A, Aronson MD. Cardiovascular risks of cyclooxygenase-2 inhibitors: where we stand now. Ann Internal Med. 2005;142:212–4.

    Google Scholar 

  11. Bartalsky A. Salicylazobenzoic acid in ulcerative colitis. Lancet. 1982;319:960–4.

    Article  Google Scholar 

  12. Riley SA, Turnberg LA. Sulphasalazine and aminosalicylate in the treatment of inflammatory bowl disease. Q J Med. 1990;75:561–2.

    Google Scholar 

  13. Gazzaniga A, Iamartina P, Maffione G, Sangal ME. Oral delayed release system for colonic specific delivery. Int J Pharm. 1994;108:77–83.

    Article  CAS  Google Scholar 

  14. Ashford M, Fell J, Attwood D, Sharma H, Woodhead P. In vitro investigation into the suitability of pH dependent polymer for colonic targeting. Int J Pharm. 1993;95:193–9.

    Article  CAS  Google Scholar 

  15. Hori M, Onishi H, Machida Y. Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. Int J Pharm. 2005;297:223–4.

    CAS  PubMed  Google Scholar 

  16. Jain D, Panda AK, Majumdar DK. Eudragit S100 entrapped Insulin microspheres for oral delivery. AAPS Pharm Sci Tech. 2005;06:E100–7.

    Article  Google Scholar 

  17. Marvola M, Nykanen P, Rautio S, Isonen N, Autere AM. Enteric polymer as binder and coating material in multiple unit site-specific drug delivery system. Eur J Pharm Sci. 1999;7:259–67.

    Article  CAS  PubMed  Google Scholar 

  18. Rahman Z, Kohli K, Khar RK, Ali M, Charoo NA, Shamsher AA. Characterization of 5-fluorouracil microspheres for colonic delivery. AAPS Pharm Sci Tech. 2006;7(2):E1–9.

    Article  Google Scholar 

  19. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6:33–66.

    CAS  PubMed  Google Scholar 

  20. Fatima A, Asghar L, Chandran S. Multiparticulate formulation approach to colon specific drug delivery: current perspectives. J Pharm Pharm Sci. 2006;9(3):327–38.

    Google Scholar 

  21. Kramer A, Turk S, Vrecer F. Statistical optimization of diclofenac sodium sustained release pellets coated with polymethacrylic films. Int J Pharm. 2003;256:43–52.

    Article  Google Scholar 

  22. Meyer JH, Dressman J, Fink AS, Amidon G. Effect of size and density on gastric emptying of indigestible solids. Gastroenterology. 1985;89:805–13.

    CAS  PubMed  Google Scholar 

  23. Rodriguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release. 1998;55:67–77.

    Article  CAS  PubMed  Google Scholar 

  24. Rathbone MJ, Hadgraft J, Roberts MS. Modified release drug delivery technology. New York: Marcel Dekker Inc.; 2003.

    Google Scholar 

  25. Lehr CM, Bowstra JA, Tukker JJ, Junginger HE. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat. J Control Release. 1990;13:51–62.

    Article  CAS  Google Scholar 

  26. ICH Harmonised Tripartite Guideline for Stability Testing of New Drug Substances and Products.

  27. Gibaldi M. Biopharmaceutics & clinical pharmacokinetics. 3rd ed. Phidelphia: Lea Febiger; 1984.

    Google Scholar 

  28. Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J Pharm Sci. 1969;58:1253–7.

    Article  CAS  PubMed  Google Scholar 

  29. Higuchi T. Mechanism of sustained action medication. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation: I—Theoretical considerations. Ind Eng Chem. 1931;23:923–31.

    Article  CAS  Google Scholar 

  31. Bourne DW. Pharmacokinetics. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 4th ed. New York: Marcel Dekker Inc.; 2002. p. 67–92.

    Google Scholar 

  32. Chuch HR, Zia H, Rhodes CP. Optimization of sotalol floating and bioadhesive extended release tablet formulations. Drug Dev Ind Pharm. 1995;21:1725–47.

    Article  Google Scholar 

  33. Peppas NA. Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.

    CAS  PubMed  Google Scholar 

  34. Akbuga J. Preparation and evaluation of controlled release of furosemide microspheres by spherical crystallization. Int J Pharm. 1989;53:99–105.

    Article  CAS  Google Scholar 

  35. Jain D, Panda AK, Majumdar DK. Insulin loaded Eudragit S100 microspheres for oral delivery: preliminary in vitro studies. J Biomed Appl. 2006;21:195–211.

    Article  CAS  Google Scholar 

  36. Peppas NA, Burim PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.

    Article  CAS  Google Scholar 

  37. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive. Biomacromol. 2008;9:1837–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakral, N.K., Ray, A.R. & Majumdar, D.K. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci: Mater Med 21, 2691–2699 (2010). https://doi.org/10.1007/s10856-010-4109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4109-2

Keywords

Navigation