Skip to main content

Advertisement

Log in

Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Gene therapy provides a unique approach to medicine as it can be adapted towards the treatment of both inherited and acquired diseases. Recently, calcium phosphate vectors as a new generation of the non viral gene delivery nano carriers have been studied because of their biocompatibility and DNA condensation and gene transfer ability. Substituting cations, like magnesium, affects physical and chemical properties of calcium phosphate nano particles. In this study, Mg2+ substituted calcium phosphate nano particles have been prepared using the simple sol gel method. X-ray diffraction analysis, Fourier transform infra red spectroscopy, transmission electron microscopy, specific surface area analysis, zeta potential measurement and ion release evaluation were used for characterization of the samples. It was concluded that presence of Mg ions decrease particle size and crystallinity of the samples and increase positive surface charge as well as beta tricalcium phosphate fraction in chemical composition of calcium phosphate. These properties result in increasing the DNA condensation ability, specific surface area and dissolution rate of the samples which make them suitable particles for gene delivery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taira K, Kataoka K, Niidome T. Non-viral gene therapy—gene design and delivery. Tokyo: Springer-Verlag; 2005.

    Book  Google Scholar 

  2. Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol. 2002;13:128–31.

    Article  CAS  PubMed  Google Scholar 

  3. Gao X, Kim KS, Liu D, Nonviral gene delivery: what we know and what is next. AAPS J. 2007; 9(1):Article 9.

  4. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Sokolova V, Radtke I, Heumann R, Epple M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials. 2006;27:3147–53.

    Article  CAS  PubMed  Google Scholar 

  6. Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28:1267–79.

    Article  CAS  PubMed  Google Scholar 

  7. Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5(6):893–905.

    Article  CAS  PubMed  Google Scholar 

  8. Suchanek LW, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials. 2004;25:4647–57.

    Article  CAS  PubMed  Google Scholar 

  9. Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969–78.

    Article  CAS  Google Scholar 

  10. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009;5:1233–40.

    Article  CAS  PubMed  Google Scholar 

  11. Lilley K, Gbureck U, Knowles J, Farrar D, Barralet J. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med. 2005;16:455–60.

    Article  CAS  PubMed  Google Scholar 

  12. Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem. 2009;103:1666–74.

    Article  CAS  PubMed  Google Scholar 

  13. Kannan S, Ferreira JMF. Synthesis and thermal stability of hydroxyapatite- beta-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine. Chem Mater. 2006;18:198–203.

    Article  CAS  Google Scholar 

  14. Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0 0 0 1) face. J Phys Chem B. 2000;104:4189–94.

    Article  CAS  Google Scholar 

  15. Arajo JC, Sader MS, Moreira EL, Moraes VCA, LeGeros RZ, Soares GA. Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement. Mater Chem Phys. 2009;118:337–40.

    Article  CAS  Google Scholar 

  16. Ito A, LeGeros RZ. Magnesium- and zinc-substituted beta-tricalcium phosphate materials. In: Vallet-Regi M, editor. Progress in bioceramics. Zurich: Trans Tech Publications; 2008. p. 85.

    Google Scholar 

  17. LeGeros RZ, Mijares D, Yao F, Tannous S, Catig G, Xi Q, Dias R, LeGeros JP. Synthetic bone mineral (SBM) for osteoporosis therapy: part 1—prevention of bone loss from mineral deficiency. Key Eng Mater. 2008;361–363:43–6.

    Article  Google Scholar 

  18. Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomater. 2007;3:785–93.

    Article  CAS  PubMed  Google Scholar 

  19. Schroeder LW, Dickens B, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in Ca3 (PO4)2 I. Refinement of Mg-containing β-Ca3 (PO4)2. J Solid State Chem. 1977;22:253–62.

    Article  CAS  ADS  Google Scholar 

  20. Enderle R, Gotz-Neunhoeffer F, Gobbels M, Muller FA, Greil P. Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by refinement Rietveld. Biomaterials. 2005;26(17):3379–84.

    Article  CAS  PubMed  Google Scholar 

  21. Dolci G, Mongiorgi R, Prati C, Valdre G, Patent application no. WO 00/03747, 1998.

  22. LeGeros RZ. Incorporation of magnesium in synthetic and in biological apatites. In: Fearnhead RW, Suga S, editors. Tooth enamel IV. Amsterdam: Elsevier; 1984. p. 32–6.

    Google Scholar 

  23. Mayer I, Schlam R, Featherstone JDB. Magnesium-containing carbonate apatites. J Inorg Biochem. 1997;66:1–6.

    Article  CAS  PubMed  Google Scholar 

  24. Golden DC, Ming DW. Nutrient-substituted hydroxyapatites: synthesis and characterization. Soil Sci Soc Am J. 1999;63:657–64.

    Article  CAS  PubMed  Google Scholar 

  25. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem. 1993;49:69–78.

    Article  CAS  Google Scholar 

  26. Okazaki M, Takahashi J, Kimura H. Comparison of crystallographic properties of Mg, Fe, Na, CO3, F, and Cl-containing apatites. J Osaka Univ Dent Sch. 1986;26:79–89.

    CAS  PubMed  Google Scholar 

  27. Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by sol–gel method. J Mater Lett. 2007;61(18):3978–83.

    Article  CAS  Google Scholar 

  28. Fathi MH, Hanifi A. Sol–gel derived nanostructure hydroxyapatite powder and coating: aging time optimization. Adv Appl Ceram. 2009;108(6):363–8.

    Article  CAS  Google Scholar 

  29. Chung RJ, Hsieh MF, Huang KC, Chou FI, Perng LH. Preparation of porous HA/beta-TCP biphasicbioceramic using a molten salt process. Key Eng Mater. 2006;309–311:1075–8.

    Article  Google Scholar 

  30. Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978.

    Article  MATH  CAS  ADS  Google Scholar 

  31. Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.

    Article  CAS  Google Scholar 

  32. Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5:3141–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 2008;202:536–42.

    Article  CAS  Google Scholar 

  34. Suchanek LW, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution. J Solid State Chem. 2004;177:793–9.

    Article  CAS  ADS  Google Scholar 

  35. LeGeros RZ, Gatti AM, Kijkowska R, Mijares DQ, LeGeros JP. Magnesium tricalcium phosphate: formation and properties. Key Eng Mater. 2004;254–256:127–30.

    Article  Google Scholar 

  36. Lee D, Sfeir C, Kumta PN. Novel in situ synthesis and characterization of nanostructured magnesium substituted β-tricalcium phosphate (β-TCMP). Mater Sci Eng C. 2009;29:69–77.

    Article  CAS  Google Scholar 

  37. Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M. Magnesium-substituted hydroxyapatite ceramics. Mat.-wiss. u. Werkstofftech. 2006;37(6):474–7.

    Article  CAS  Google Scholar 

  38. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G. Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc. 2006;26:2593–601.

    Article  CAS  Google Scholar 

  39. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  40. Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C. 2008;28:179–87.

    Article  CAS  Google Scholar 

  41. W-Yih C, M-Shen L, Po-Hsun L, Pei-Shun T, Yung C, Shuichi Y. Studies of the interaction mechanism between single strand and double-strand DNA with hydroxyapatite by microcalorimetry and isotherm measurements. Colloids Surf A Physicochem Eng Asp. 2007;295(1–3):274–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hanifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanifi, A., Fathi, M.H., Mir Mohammad Sadeghi, H. et al. Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J Mater Sci: Mater Med 21, 2393–2401 (2010). https://doi.org/10.1007/s10856-010-4088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4088-3

Keywords

Navigation