Skip to main content

Advertisement

Log in

A Focus on Biomaterials Based on Calcium Phosphate Nanoparticles: an Indispensable Tool for Emerging Biomedical Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Calcium phosphate (CaP) is a kind of eco-friendly biodegradable material chemically similar to human hard tissue like bone and teeth and is highly biocompatible. CaPs have excellent biological quality, are cheap and easy to produce, are safe, and may be approved for clinical applications quite fast. CaP materials have proven themselves, yet their future is still bright. Today’s major global public health issue is the prevalence of injury and illness brought on by bone fractures. There are a number of problems with the current treatments that call for research into better methods of dealing with bone disorders. Gene therapy has recently gained attention as a promising strategy for efficient bone repair and regeneration via the use of RNA interference (RNAi) systems to modulate gene expression in the bone microenvironment. CaP nanoparticles have been shown to be efficient transporters for biomolecules that cannot enter cells to exert their biological impacts, such as nucleic acids, proteins, peptides, antibodies, and medicines. Surface functionalization and incorporation of cargo molecules make these nanoparticles distinct from their solid counterparts. This protects against nucleases and allows for selective cellular targeting. In this overview, we looked at the fundamentals of nanoparticles of calcium phosphates, including their production techniques, physicochemical features, and applications in transfection, gene silencing, drug administration, the environment, electricity, tissue engineering, drug delivery, and biomedicine. This study is predicted to be extremely valuable and advantageous to the researcher in the future progress of the research work in therapeutic applications since it comprises very comprehensive thoughts about calcium phosphate nanoparticles.

Graphical Abstract

Calcium phosphate is known to be a “super material” with improved biological qualities such as bioactivity, biodegradability, cellular function, and osteoconduction. The synthesis and fabrication of calcium phosphate by different crucial techniques in enhancing the physical and chemical properties allow it to be potential in various bioengineering fields such as drug delivery, bone regeneration, gene silencing, and electrical as well as environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data inculded in the journal has been properly supported by appropriate references. Although all the figures and schemes in the article has been prepared by our own.

Abbreviations

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

CaP:

Calcium phosphate

PCBs:

Polychlorinated biphenyls

NZVI:

Nanoscale zero-valent iron

LED:

Light-emitting diode

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

DNA:

Deoxyribonucleic acid

UV:

Ultraviolet

SAXS:

Small-angle X-ray scattering

SANS:

Small-angle neutron scattering

GI:

Grazing incidence

XR:

X-ray

NR:

Neutron reflectometry

MCPM:

Monocalcium phosphate monohydrate

DCPD:

Dicalcium phosphate dihydrate

SSA:

Specific surface area

HA:

Hydroxyapatite

TCP:

Tricalcium phosphate

DoE:

Design of experiment

NPs:

Nanoparticles

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

BET:

Brunauer-Emmett-Teller

DLS:

Dynamic light scattering

TGA:

Thermo gravimetric analyzer

IAP:

Ion activity products

Ca:

Calcium

P:

Phosphate

TRITC:

Tetramethylrhodamine isothiocyanate

BSA:

Bovine serum albumin

eGFP:

Enhanced green fluorescent protein

RISC:

RNA-induced silencing complex

HeLa:

Human cervix epithelial cells

PDT:

Photodynamic therapy

mTHPP:

5,10,15,20-Tetrakis(3-hydroxyphenyl) porphyrin

WSL:

White spots lesion

ACP:

Amorphous calcium phosphate

PEG:

Polyethylene glycol

PLGA:

Poly (lactic-co-glycolic acid)

PCL:

Polycaprolactone

PLLA:

Poly (l-lactic acid)

References

  1. Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770s till 1950. Materials Science and Engineering C, 33, 3085–3110.

    Google Scholar 

  2. Forsen, S. T. U. R. E., & Kordel, J. O. H. A. N. (1994). Calcium in biological systems (pp. 107–166). Bioinorganic chemistry.

    Google Scholar 

  3. Yang, R. N., Ye, F., Cheng, L. J., Wang, J. J., Lu, X. F., Shi, Y. J., et al. (2011). Osteoinduction by Ca-P biomaterials implanted into the muscles of mice. Journal of Zhejiang University. Science. B, 12, 582–590.

    Google Scholar 

  4. Huang, L., Zhou, B., Wu, H., Zheng, L., & Zhao, J. (2017). Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA). Materials Science and Engineering C, 70, 955–961.

    Google Scholar 

  5. Lu, J., Yu, H., & Chen, C. (2018). Biological properties of calcium phosphate biomaterials for bone repair: A review. RSC Advances, 8, 2015–2033.

    Google Scholar 

  6. Duan, R., Barbieri, D., Luo, X., Weng, J., de Bruijn, J. D., & Yuan, H. (2016). Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment. Journal of Orthopaedic Research, 34, 1865–1873.

    Google Scholar 

  7. Schilling, A. F., Linhart, W., Filke, S., Gebauer, M., Schinke, T., Rueger, J. M., & Amling, M. (2004). Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials, 25, 3963–3972.

    Google Scholar 

  8. Chiba, S., Anada, T., Suzuki, K., Saito, K., Shiwaku, Y., Miyatake, N., Suzuki, O., et al. (2016). Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. Journal of Biomedical Materials Research. Part A, 104, 2833–2842.

    Google Scholar 

  9. Lei, Y., Xu, Z., Ke, Q., Yin, W., Chen, Y., Zhang, C., & Guo, Y. (2017). Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Materials Science and Engineering C, 72, 134–142.

    Google Scholar 

  10. Fihri, A., Len, C., Varma, R. S., & Solhy, A. (2017). Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347, 48–76.

    Google Scholar 

  11. Bose, S., & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 8, 1401–1421.

    Google Scholar 

  12. Carrodeguas, R. G., & De Aza, S. (2011). α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 7, 3536–3546.

    Google Scholar 

  13. Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41, 3130–3146.

    Google Scholar 

  14. Nogi, K., Naito, M., & Yokoyama, T. (2012). Nanoparticle technology handbook. Elsevier.

    Google Scholar 

  15. Rotello, V. (Ed.). (2004). Nanoparticles: Building blocks for nanotechnology. Springer Science & Business Media.

    Google Scholar 

  16. Ghosh, S., & Ray, A. (2014). Alkyl chain length asymmetry effects of mixed n-acyl sarcosinate and N-cetylpyridinium chloride surfactants: Spontaneous formation of stable nanovesicles as excipient. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461, 248–257.

    Google Scholar 

  17. Ringu, T., Ghosh, S., Das, A., & Pramanik, N. (2022). Zinc oxide nanoparticles: An excellent biomaterial for bioengineering applications. emergent mater., 1–20 https://doi.org/10.1007/s00289-022-04443-4

  18. Ghosh, S., Ray, A., & Pramanik, N. (2020). Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophysical Chemistry, 265, 106429.

    Google Scholar 

  19. Fan, D., Chen, S., Johnson, R. L., & Tratnyek, P. G. (2015). Field deployable chemical redox probe for quantitative characterization of carboxymethylcellulose modified nano zerovalent iron. Environmental Science and Technology, 49, 10589–10597.

    Google Scholar 

  20. Ashraf, M. A., Peng, W., Zare, Y., & Rhee, K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13, 1–7.

    Google Scholar 

  21. Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, Mazumdar, P. et al. (2019). Silver nanoparticles and its polymer nanocomposites-Synthesis, optimization, biomedical usage, and its various applications. Polymer nanocomposites in biomedical engineering, London, United Kingdom, pp 331–373.

  22. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Google Scholar 

  23. Kausar, A. (2020). Flame retardant potential of clay nanoparticles (pp. 169–184). In Clay Nanoparticles.

    Google Scholar 

  24. Yang, D. (2012). Application of nanocomposites for supercapacitors: Characteristics and properties. Nanocomposites - New Trends and Developments, pp 299–328.

  25. Bhardwaj, P., Singh, B., & Behera, S. P. (2021). Green approaches for nanoparticle synthesis: Emerging trends. Nanomaterials, pp167–193.

  26. Vergaz, R., Algorri, J. F., Cuadrado, A., Sánchez-Pena, J. M., & García-Cámara, B. (2016). Control of the light interaction in a semiconductor nanoparticle dimer through scattering directionality. IEEE Photonics Journal, 8, 1–10.

    Google Scholar 

  27. Ghosh, S., Ghosh, S., Atta, A. K., & Pramanik, N. (2018). A succinct overview of hydroxyapatite based nanocomposite biomaterials: Fabrications, physicochemical properties and some relevant biomedical applications. J. Bionanoscience, 12, 143–158.

    Google Scholar 

  28. Ghosh, S., Raju, R. S. K., Ghosh, N., Chaudhury, K., Ghosh, S., Banerjee, I., & Pramanik, N. (2019). Development and physicochemical characterization of doxorubicin-encapsulated hydroxyapatite–polyvinyl alcohol nanocomposite for repair of osteosarcoma-affected bone tissues. Comptes Rendus Chimie, 22, 46–57.

    Google Scholar 

  29. Ghosh, S., Ghosh, S., Jana, S. K., & Pramanik, N. (2020). Biomedical application of doxorubicin coated hydroxyapatite—poly (lactide-co-glycolide) nanocomposite for controlling osteosarcoma therapeutics. Journal of Nanoscience and Nanotechnology, 20, 3994–4004.

    Google Scholar 

  30. Ghosh, S., Ghosh, S., & Pramanik, N. (2020). Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells. Adv Compos Hybrid Mater, 3, 303–314.

    Google Scholar 

  31. Kumar, C. S., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63, 789–808.

    Google Scholar 

  32. Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934.

    Google Scholar 

  33. Sadik, O. A. (2013). Anthropogenic nanoparticles in the environment. Environmental Science. Processes & Impacts, 15, 19–20.

    Google Scholar 

  34. Hirano, S. (2009). A current overview of health effect research on nanoparticles. Environmental Health and Preventive Medicine, 14, 223–225.

    Google Scholar 

  35. Al-Sanabani, J. S., Madfa, A. A., & Al-Sanabani, F. A. (2013). Application of calcium phosphate materials in dentistry. International Journal of Biomaterials.

  36. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. Journal of Biomedical Materials Research, 24, 721–734.

    Google Scholar 

  37. Hench, L. L., Day, D. E., Höland, W., & Rheinberger, V. M. (2010). Glass and medicine. International Journal of Applied Glass Science, 1, 104–117.

    Google Scholar 

  38. Schilling, A. F., Filke, S., Brink, S., Korbmacher, H., Amling, M., & Rueger, J. M. (2006). Osteoclasts and biomaterials. European Journal of Trauma and Emergency Surgery, 32, 107–113.

    Google Scholar 

  39. Tan, L., Yu, X., Wan, P., & Yang, K. (2013). Biodegradable materials for bone repairs: A review. Journal of Materials Science and Technology, 29, 503–513.

    Google Scholar 

  40. Doi, Y., Iwanaga, H., Shibutani, T., Moriwaki, Y., & Iwayama, Y. (1999). Osteoclastic responses to various calcium phosphates in cell cultures. Journal of Biomedical Materials Research, 47, 424–433.

    Google Scholar 

  41. Guo, X., Gough, J. E., Xiao, P., Liu, J., & Shen, Z. (2007). Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. Journal of Biomedical Materials Research. Part A, 82, 1022–1032.

    Google Scholar 

  42. Liu, H., & Webster, T. J. (2007). Nanomedicine for implants: A review of studies and necessary experimental tools., 28, 354–369.

    Google Scholar 

  43. Kumar, G., Waters, M. S., Farooque, T. M., Young, M. F., & Simon, C. G., Jr. (2012). Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials, 33, 4022–4030.

    Google Scholar 

  44. Teixeira, S., Fernandes, M. H., Ferraz, M. P., & Monteiro, F. J. (2010). Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. Journal of Biomedical Materials Research. Part A, 95, 1–8.

    Google Scholar 

  45. Zhuang, Z., Fujimi, T. J., Nakamura, M., Konishi, T., Yoshimura, H., & Aizawa, M. (2013). Development of a, b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomaterialia, 9, 6732–6740.

    Google Scholar 

  46. Carbajal, L., Serena, S., Caballero, A., Saínz, M. A., Detsch, R., & Boccaccini, A. R. (2014). Role of ZnO additions on the β/α phase relation in TCP based materials: Phase stability, properties, dissolution and biological response. Journal of the European Ceramic Society, 34, 1375–1385.

    Google Scholar 

  47. Cheng, L., Shi, Y., Ye, F., & Bu, H. (2013). Osteoinduction of calcium phosphate biomaterials in small animals. Materials Science and Engineering C, 33, 1254–1260.

    Google Scholar 

  48. Habibovic, P., Yuan, H., Van Der Valk, C. M., Meijer, G., van Blitterswijk, C. A., & De Groot, K. (2005). 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 26, 3565–3575.

    Google Scholar 

  49. Habibovic, P., Sees, T. M., van den Doel, M. A., van Blitterswijk, C. A., & de Groot, K. (2006). Osteoinduction by biomaterials—Physicochemical and structural influences. Journal of Biomedical Materials Research. Part A, 77, 747–762.

    Google Scholar 

  50. Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., ... & Bu, H. (2010). Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomaterialia, 6 1569–1574.

  51. Diaz-Flores, L. U. C. I. O., Gutierrez, R. I. C. A. R. D. O., Lopez-Alonso, A. N. T. O. N. I. O., Gonzalez, R. I. C. A. R. D. O., & Varela, H. I. L. D. A. (1992). Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clinical Orthopaedics and Related Research, 275, 280–286.

    Google Scholar 

  52. Chow, L. C., & Eanes, E. D. (2001). Solubility of calcium phosphates. Monographs in Oral Science, pp 94–111.

  53. Deo, K. A., Lokhande, G., & Gaharwar, A. K. (2019). Nanostructured hydrogels for tissue engineering and regenerative medicine. Encyclopedia of Tissue Eng Regen Med, 1, 3.

    Google Scholar 

  54. Mehdawi, I. M., & Young, A. (2013). Antibacterial composite restorative materials for dental applications (pp. 270–293). Woodhead Publishing.

    Google Scholar 

  55. Song, M., Park, J., Lee, J., Suh, H., Lee, H., Ryu, D., & Lee, C. (2020). New analytical approach for the determination of calcium phosphate dibasic and tribasic in processed food by comparison of ion chromatography with high-performance liquid chromatography. Foods, 9, 248.

    Google Scholar 

  56. Mulye, N. V., & Turco, S. J. (1994). Use of dicalcium phosphate dihydrate for sustained release of highly water soluble drugs. Drug Development and Industrial Pharmacy, 20, 2621–2632.

    Google Scholar 

  57. Adawy, A., EL–BASSYOUNI, G. T., Ibrahim, M., & ABDEL–FATTAH, W. I. (2013). Bio nano material: The third alternative. Nanotechnology: Diagnostics and Therapeutics; Eds, 7, 27.

  58. Bose, S., Tarafder, S., Edgington, J., & Bandyopadhyay, A. (2011). Calcium phosphate ceramics in drug delivery. JOM Journal of the Minerals Metals and Materials Society, 63, 93–98.

    Google Scholar 

  59. Arcos, D., Boccaccini, A. R., Bohner, M., Díez-Pérez, A., Epple, M., Gómez-Barrena, E., ... & Vallet-Regí, M. (2014). The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomaterialia, 10:1793–1805.

  60. Da Silva Brum, I., De Carvalho, J. J., Da Silva Pires, J. L., De Carvalho, M. A. A., Dos Santos, L. B. F., & Elias, C. N. (2019). Nanosized hydroxyapatite and β-tricalcium phosphate composite: Physico-chemical, cytotoxicity, morphological properties and in vivo trial. Science and Reports, 9, 1–10.

    Google Scholar 

  61. Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F., & Praetorius, A. (2019). Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology, 14, 208–216.

    Google Scholar 

  62. Salma, K., Berzina-Cimdina, L., & Borodajenko, N. (2010). Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Process. Appl. Ceram, 4, 45–51.

    Google Scholar 

  63. Welzel, T., Meyer-Zaika, W., & Epple, M. (2004). Continuous preparation of functionalised calcium phosphate nanoparticles with adjustable crystallinity. ChemComm, 10, 1204–1205.

    Google Scholar 

  64. Doll, T. A., Raman, S., Dey, R., & Burkhard, P. (2013). Nanoscale assemblies and their biomedical applications. Journal of the Royal Society, Interface, 10, 20120740.

    Google Scholar 

  65. Mohn, D., Doebelin, N., Tadier, S., Bernabei, R. E., Luechinger, N. A., Stark, W. J., & Bohner, M. (2011). Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. Journal of Materials Chemistry, 21, 13963–13972.

    Google Scholar 

  66. Sokolova, V. V., Radtke, I., Heumann, R., & Epple, M. (2006). Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials, 27, 3147–3153.

    Google Scholar 

  67. Sadat-Shojai, M., Khorasani, M. T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9, 7591–7621.

    Google Scholar 

  68. Neira, I. S., Kolen’ko, Y. V., Lebedev, O. I., Van Tendeloo, G., Gupta, H. S., Guitián, F., & Yoshimura, M. (2009). An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth & Design, 9, 466–474.

    Google Scholar 

  69. Ganesan, K., Kovtun, A., Neumann, S., Heumann, R., & Epple, M. (2008). Calcium phosphate nanoparticles: Colloidally stabilized and made fluorescent by a phosphate-functionalized porphyrin. Journal of Materials Chemistry, 18, 3655–3661.

    Google Scholar 

  70. Dördelmann, G., Kozlova, D., Karczewski, S., Lizio, R., Knauer, S., & Epple, M. (2014). Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly (d, l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. Journal Materials Chemistry B, 2, 7250–7259.

    Google Scholar 

  71. Ataol, S., Tezcaner, A., Duygulu, O., Keskin, D., & Machin, N. E. (2015). Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells. Journal of Nanoparticle Research, 17, 1–14.

    Google Scholar 

  72. Boutinguiza, M., Comesaña, R., Lusquiños, F., Riveiro, A., & Pou, J. (2011). Production of nanoparticles from natural hydroxylapatite by laser ablation. Nanoscale Research Letters, 6, 1–5.

    Google Scholar 

  73. Karlinsey, R. L., & Mackey, A. C. (2009). Solid-state preparation and dental application of an organically modified calcium phosphate. Journal of Materials Science, 44, 346–349.

    Google Scholar 

  74. Pedraza, C. E., Bassett, D. C., McKee, M. D., Nelea, V., Gbureck, U., & Barralet, J. E. (2008). The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials, 29, 3384–3392.

    Google Scholar 

  75. Cheng, X., & Kuhn, L. (2007). Chemotherapy drug delivery from calcium phosphate nanoparticles. International Journal of Nanomedicine, 2, 667–674.

    Google Scholar 

  76. Das, A., Ringu, T., Ghosh, S., & Pramanik, N. (2022). A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin. https://doi.org/10.1007/s00289-022-04443-4

  77. Morgan, T. T., Muddana, H. S., Altinoglu, E. I., Rouse, S. M., Tabakovic, A., Tabouillot, T., & Adair, J. H. (2008). Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Letters, 8, 4108–4115.

    Google Scholar 

  78. Altınogˇlu, E. I., Russin, T. J., Kaiser, J. M., Barth, B. M., Eklund, P. C., Kester, M., & Adair, J. H. (2008). Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano, 2, 2075–2084.

    Google Scholar 

  79. Isobe, T., Nakamura, S., Nemoto, R., Senna, M., & Sfihi, H. (2002). Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. The Journal of Physical Chemistry B, 106, 5169–5176.

    Google Scholar 

  80. Liu, D. M., Troczynski, T., & Tseng, W. J. (2001). Water-based sol–gel synthesis of hydroxyapatite: Process development. Biomaterials, 22, 1721–1730.

    Google Scholar 

  81. Nayak, A. K. (2010). Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2, 903–907.

    Google Scholar 

  82. Chen, Q. Z., Wong, C. T., Lu, W. W., Cheung, K. M. C., Leong, J. C. Y., & Luk, K. D. K. (2004). Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials, 25, 4243–4254.

    Google Scholar 

  83. Jordan, M., & Wurm, F. (2004). Transfection of adherent and suspended cells by calcium phosphate. Methods, 33, 136–143.

    Google Scholar 

  84. Oyane, A., Wang, X., Sogo, Y., Ito, A., & Tsurushima, H. (2012). Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomaterialia, 8, 2034–2046.

    Google Scholar 

  85. Lin, K., Wu, C., & Chang, J. (2014). Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomaterialia, 10, 4071–4102.

    Google Scholar 

  86. Chowdhury, E. H., Kunou, M., Nagaoka, M., Kundu, A. K., Hoshiba, T., & Akaike, T. (2004). High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca–Mg phosphate. Gene, 341, 77–82.

    Google Scholar 

  87. Perez-Coronado, A. M., Calvo, L., Alonso-Morales, N., Heras, F., Rodriguez, J. J., & Gilarranz, M. A. (2016). Multiple approaches to control and assess the size of Pd nanoparticles synthesized via water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 28–34.

    Google Scholar 

  88. Zhou, W. Y., Wang, M., Cheung, W. L., Guo, B. C., & Jia, D. M. (2008). Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. Journal of Materials Science. Materials in Medicine, 19, 103–110.

    Google Scholar 

  89. Koumoulidis, G. C., Katsoulidis, A. P., Ladavos, A. K., Pomonis, P. J., Trapalis, C. C., Sdoukos, A. T., & Vaimakis, T. C. (2003). Preparation of hydroxyapatite via microemulsion route. Journal of Colloid and Interface Science, 259, 254–260.

    Google Scholar 

  90. Jarcho, M., Salsbury, R. L., Thomas, M. B., & Doremus, R. H. (1979). Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. Journal of Materials Science, 14, 142–150.

    Google Scholar 

  91. Puleo, D. A., Holleran, L. A., Doremus, R. H., & Bizios, R. (1991). Osteoblast responses to orthopedic implant materials in vitro. Journal of Biomedical Materials Research, 25, 711–723.

    Google Scholar 

  92. Wagner, V., Dullaart, A., Bock, A. K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24, 1211–1217.

    Google Scholar 

  93. Wang, P., Lombi, E., Zhao, F. J., & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21, 699–712.

    Google Scholar 

  94. Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31, 1465–1485.

    Google Scholar 

  95. Uskoković, V. (2020). Ion-doped hydroxyapatite: An impasse or the road to follow. Ceramics International, 46, 11443–11465.

    Google Scholar 

  96. Victor, S. P., & Kumar, T. S. (2008). Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics. Journal of Biomedical Nanotechnology, 4, 203–209.

    Google Scholar 

  97. Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112, 5073–5091.

    Google Scholar 

  98. Rhee, S. H. (2002). Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials, 23, 1147–1152.

    Google Scholar 

  99. Kim, I. S., & Kumta, P. N. (2004). Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Materials Science and Engineering B, 111, 232–236.

    Google Scholar 

  100. Drouet, C., Bosc, F., Banu, M., Largeot, C., Combes, C., Dechambre, G., ... & Rey, C. (2009). Nanocrystalline apatites: From powders to biomaterials. Powder Technol, 190:118–122.

  101. Jevtic, M., Mitric, M., Skapin, S., Jancar, B., Ignjatovic, N., & Uskokovic, D. (2008). Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Crystal Growth & Design, 8, 2217–2222.

    Google Scholar 

  102. Di Chen, J., Wang, Y. J., Wei, K., Zhang, S. H., & Shi, X. T. (2007). Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials, 28, 2275–2280.

    Google Scholar 

  103. Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M. R., & Sorrell, C. C. (2003). Some important factors in the wet precipitation process of hydroxyapatite. Materials and Design, 24, 197–202.

    Google Scholar 

  104. Kim, D. W., Cho, I. S., Kim, J. Y., Jang, H. L., Han, G. S., Ryu, H. S., Hong, K. S., et al. (2010). Simple large-scale synthesis of hydroxyapatite nanoparticles: In situ observation of crystallization process. Langmuir, 26, 384–388.

    Google Scholar 

  105. Chen, J., Zheng, C., & Chen, G. A. (1996). Interaction of macro-and micromixing on particle size distribution in reactive precipitation. Chemical Engineering Science, 51, 1957–1966.

    Google Scholar 

  106. Kazmierczak, T., Schuttringer, E., Tomažić, B., & Nancollas, G. H. (1981). Controlled composition studies of calcium carbonate and sulfate crystal growth. Croatica Chemica Acta, 54, 277–287.

    Google Scholar 

  107. Uskokovic, V. (2009). Challenges for the modern science in its descend towards nano scale. Current Nanoscience, 5, 372–389.

    Google Scholar 

  108. Latocha, J., Wojasiński, M., Sobieszuk, P., & Ciach, T. (2018). Synthesis of hydroxyapatite in a continuous reactor: A review. Chemical and Process Engineering, 39(3), 281–293.

    Google Scholar 

  109. Massart, D. L., Vandeginste, B. G., Buydens, L. M., Lewi, P. J., Smeyers-Verbeke, J., & Jong, S. D. (1998). Handbook of chemometrics and qualimetrics. Elsevier Science Inc.

    Google Scholar 

  110. Deng, S. T., Lin, Z. T., Tang, H. X., Ullah, S., & Bi, Y. G. (2019). Rapid synthesis of hydroxyapatite nanoparticles via a novel approach in the dual-frequency ultrasonic system for specific biomedical application. Journal of Materials Research, 34, 2796–2806.

    Google Scholar 

  111. Di Mauro, V., Iafisco, M., Salvarani, N., Vacchiano, M., Carullo, P., Ramírez-Rodríguez, G. B., Catalucci, D., et al. (2016). Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine, 11, 891–906.

    Google Scholar 

  112. Sun, L., & Chow, L. C. (2008). Preparation and properties of nano-sized calcium fluoride for dental applications. Dental Materials, 24, 111–116.

    Google Scholar 

  113. Takagi, S., Chow, L. C., Hirayama, S., & Eichmiller, F. C. (2003). Properties of elastomeric calcium phosphate cement–chitosan composites. Dental Materials, 19, 797–804.

    Google Scholar 

  114. Ring, T. A. (1996). Fundamentals of ceramic powder processing and synthesis. Elsevier.

    Google Scholar 

  115. Vogel, G. L., Chow, L. C., & Brown, W. E. (1983). A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Research, 17, 23–31.

    Google Scholar 

  116. Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine—Challenge and perspectives. Angewandte Chemie International Edition, 48, 872–897.

    Google Scholar 

  117. Vallet-Regí, M. (2006). Revisiting ceramics for medical applications. Dalton Transactions, 44, 5211–5220.

    Google Scholar 

  118. Reischl, D., & Zimmer, A. (2009). Drug delivery of siRNA therapeutics: Potentials and limits of nanosystems. Nanomed.: Nanotechnol. Biologie et Médecine, 5, 8–20.

    Google Scholar 

  119. Sundriyal, S., Sharma, R. K., & Jain, R. (2006). Current advances in antifungal targets and drug development. Current Medicinal Chemistry, 13, 1321–1335.

    Google Scholar 

  120. Jewell, C. M., & Lynn, D. M. (2008). Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Advanced Drug Delivery Reviews, 60, 979–999.

    Google Scholar 

  121. Hu, L., Mao, Z., & Gao, C. (2009). Colloidal particles for cellular uptake and delivery. Journal of Materials Chemistry, 19, 3108–3115.

    Google Scholar 

  122. Graham, F. L., & Van Der Eb, A. J. (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 52, 456–467.

    Google Scholar 

  123. Gonzalez-McQuire, R., Green, D. W., Partridge, K. A., Oreffo, R. O., Mann, S., & Davis, S. A. (2007). Coating of human mesenchymal cells in 3D culture with bioinorganic nanoparticles promotes osteoblastic differentiation and gene transfection. Advanced Materials, 19, 2236–2240.

    Google Scholar 

  124. Xu, Z. P., Zeng, Q. H., Lu, G. Q., & Yu, A. B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61, 1027–1040.

    Google Scholar 

  125. Cai, Y., & Tang, R. (2008). Calcium phosphate nanoparticles in biomineralization and biomaterials. Journal of Materials Chemistry, 18, 3775–3787.

    Google Scholar 

  126. Kakizawa, Y., Furukawa, S., Ishii, A., & Kataoka, K. (2006). Organic–inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. Journal of Controlled Release, 111, 368–370.

    Google Scholar 

  127. Green, D. W., Mann, S., & Oreffo, R. O. (2006). Mineralized polysaccharide capsules as biomimetic microenvironments for cell, gene and growth factor delivery in tissue engineering. Soft Matter, 2, 732–737.

    Google Scholar 

  128. Sokolova, V., Kovtun, A., Heumann, R., & Epple, M. (2007). Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate–bovine serum albumin into these nanoparticles. JBIC Journal of Biological Inorganic Chemistry, 12, 174–179.

    Google Scholar 

  129. Kurreck, J. (2009). RNA interference: from basic research to therapeutic applications. Angewandte Chemie - International Edition, 48, 1378–1398.

    Google Scholar 

  130. Fire, A. Z. (2007). Gene silencing by double-stranded RNA (Nobel lecture). Angewandte Chemie International Edition, 46, 6966–6984.

    Google Scholar 

  131. Mello, C. C. (2007). Return to the RNAi world: Rethinking gene expression and evolution (Nobel Lecture). Angewandte Chemie International Edition, 46, 6985–6994.

    Google Scholar 

  132. Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2, 243–247.

    Google Scholar 

  133. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.

    Google Scholar 

  134. Krishnamachari, Y., & Salem, A. K. (2009). Innovative strategies for co-delivering antigens and CpG oligonucleotides. Advanced Drug Delivery Reviews, 61, 205–217.

    Google Scholar 

  135. Cui, Z., & Mumper, R. J. (2003). Microparticles and nanoparticles as delivery systems for DNA vaccines. Critical Reviews in Therapeutic Drug Carrier Systems, 20, 2–3.

    Google Scholar 

  136. Sokolova, V., Kovtun, A., Prymak, O., Meyer-Zaika, W., Kubareva, E. A., Romanova, E. A., ... & Epple, M. (2007). Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. Journal of Materials Chemistry, 17:721–727.

  137. Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S. G., Nel, A. E., Zink, J. I., et al. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2, 889–896.

    Google Scholar 

  138. Gil, P. R., & Parak, W. J. (2008). Composite nanoparticles take aim at cancer. ACS Nano, 2, 2200–2205.

    Google Scholar 

  139. Shubayev, V. I., Pisanic, T. R., II., & Jin, S. (2009). Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, 61, 467–477.

    Google Scholar 

  140. Yuan, F. (1998). July) (pp. 164–175). Transvascular drug delivery in solid tumors. In Seminars in radiation oncology.

    Google Scholar 

  141. Ewence, A. E., Bootman, M., Roderick, H. L., Skepper, J. N., McCarthy, G., Epple, M., Proudfoot, D., et al. (2008). Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: A potential mechanism in atherosclerotic plaque destabilization. Circulation Research, 103, 28–34.

    Google Scholar 

  142. Mondéjar, S. P., Kovtun, A., & Epple, M. (2007). Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. Journal of Materials Chemistry, 17, 4153–4159.

    Google Scholar 

  143. Ramachandran, R., Paul, W., & Sharma, C. P. (2009). Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. Journal Biomedical Materials. Research B, 88, 41–48.

    Google Scholar 

  144. Kester, M., Heakal, Y., Fox, T., Sharma, A., Robertson, G. P., Morgan, T. T., Adair, J. H., et al. (2008). Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Letters, 8, 4116–4121.

    Google Scholar 

  145. Liu, T., Tang, A., Zhang, G., Chen, Y., Zhang, J., Peng, S., & Cai, Z. (2005). Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer Biotherapy & Radiopharmaceuticals, 20, 141–149.

    Google Scholar 

  146. Djelal, B., & áGeorge Truscott, T. (1999). Journal of the Chemical Society. Perkin Transactions, 2, 325–328.

    Google Scholar 

  147. Konan, Y. N., Gurny, R., & Allémann, E. (2002). State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 66, 89–106.

    Google Scholar 

  148. Urch, H., Vallet-Regi, M., Ruiz, L., Gonzalez-Calbet, J. M., & Epple, M. (2009). Calcium phosphate nanoparticles with adjustable dispersability and crystallinity. Journal of Materials Chemistry, 19, 2166–2171.

    Google Scholar 

  149. Bose, S., Dasgupta, S., Tarafder, S., & Bandyopadhyay, A. (2010). Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia, 6, 3782–3790.

    Google Scholar 

  150. Schwiertz, J., Meyer-Zaika, W., Ruiz-Gonzalez, L., González-Calbet, J. M., Vallet-Regi, M., Epple, M., et al. (2008). Calcium phosphate nanoparticles as templates for nanocapsules prepared by the layer-by-layer technique. Journal of Materials Chemistry, 18, 3831–3834.

    Google Scholar 

  151. Mitchell, L. (1992). Decalcification during orthodontic treatment with fixed appliances—An overview. British J. Orthod, 19, 199–205.

    Google Scholar 

  152. O’reilly, M. M., & Featherstone, J. D. B. (1987). Demineralization and remineralization around orthodontic appliances: An in vivo study. Am J Orthod Dentofacial Orthop, 92, 33–40.

    Google Scholar 

  153. Anuwongnukroh, N., Dechkunakorn, S., & Kanpiputana, R. (2017). Oral hygiene behavior during fixed orthodontic treatment. Dentistry, 7, 1–5.

    Google Scholar 

  154. Ratcliff, P. A., & Johnson, P. W. (1999). The relationship between oral malodor, gingivitis, and periodontitis. A Review Journal Periodontol, 70, 485–489.

    Google Scholar 

  155. Khurshid, Z., Naseem, M., Zafar, M. S., Najeeb, S., & Zohaib, S. (2017). Propolis: A natural biomaterial for dental and oral healthcare. Journal Dentistry Research Dentistry Clinical Dentistry Prospects, 11, 265.

    Google Scholar 

  156. Anderson, G. B., Bowden, J., Morrison, E. C., & Caffesse, R. G. (1997). Clinical effects of chlorhexidine mouthwashes on patients undergoing orthodontic treatment. Americal Journal Orthodontics Dentofacial Orthopedic, 111, 606–612.

    Google Scholar 

  157. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress Polymer, 31, 603–632.

    Google Scholar 

  158. Costa, E. M., Silva, S., Costa, M. R., Pereira, M., Campos, D. A., Odila, J., ... & Pintado, M. M. (2014). Chitosan mouthwash: Toxicity and in vivo validation. Carbohydrate Polymers, 111:385–392.

  159. Pepla, E., Besharat, L. K., Palaia, G., Tenore, G., & Migliau, G. (2014). Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Annali di Stomatologia, 5, 108.

    Google Scholar 

  160. Allaker, R. P. (2010). The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 89, 1175–1186.

    Google Scholar 

  161. Jabri, M., Mejdoubi, E., El Gadi, M., & Hammouti, B. (2013). Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments. Research on Chemical Intermediates, 39, 659–669.

    Google Scholar 

  162. Albinali, K. E., Zagho, M. M., Deng, Y., & Elzatahry, A. A. (2019). A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. International Journal of Nanomedicine, 14, 1707.

    Google Scholar 

  163. Roggers, R., Kanvinde, S., Boonsith, S., & Oupický, D. (2014). The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. An Official Journal of the American Association of Pharmaceutical Scientists, 15, 1163–1171.

    Google Scholar 

  164. Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19, 1979.

    Google Scholar 

  165. Ramachandran, R., Paul, W., & Sharma, C. P. (2009). Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J. Biomedical Materials Research Part B Applied. Biomaterials, 88, 41–48.

    Google Scholar 

  166. Levingstone, T. J., Herbaj, S., Redmond, J., McCarthy, H. O., & Dunne, N. J. (2020). Calcium phosphate nanoparticles-based systems for RNAi delivery: Applications in bone tissue regeneration. Nanomater, 10, 146.

    Google Scholar 

  167. Dorozhkin, S. V. (2011). Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1, 121–164.

    Google Scholar 

  168. Epple, M. (2018). Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomaterialia, 77, 1–14.

    Google Scholar 

  169. Colilla, M., & Vallet-Regí, M. (2020). Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. International Journal of Molecular Sciences, 21, 8605.

    Google Scholar 

  170. Perez, R. A., Kim, H. W., & Ginebra, M. P. (2012). Polymeric additives to enhance the functional properties of calcium phosphate cements. Journal Tissue Engineering, 3, 1.

    Google Scholar 

  171. Hesaraki, S., Borhan, S., Zamanian, A., & Hafezi-Ardakani, M. (2013). Rheological properties and Injectability of β-Tricalcium phosphate-hyaluronic acid/polyethylene glycol composites used for the treatment of Vesicouretheral reflux. Biomedical Engineering Research, 1, 40–44.

    Google Scholar 

  172. Ruhe, P. Q., Hedberg, E. L., Padron, N. T., Spauwen, P. H., Jansen, J. A., & Mikos, A. G. (2003). rhBMP-2 release from injectable poly (DL-lactic-co-glycolic acid)/calcium-phosphate cement composites. The Journal of Bone and Joint Surgery, 85, 75–81.

    Google Scholar 

  173. Zhao, L., Weir, M. D., & Xu, H. H. (2010). An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 31, 6502–6510.

    Google Scholar 

  174. Koempel, J. A., Patt, B. S., O’Grady, K., Wozney, J., & Toriumi, D. M. (1998). The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. Journal of Biomedical Materials Research, 41, 359–363.

    Google Scholar 

  175. Kaygili, O., Keser, S., Tankut, A. T. E. S., Kirbag, S., & Yakuphanoglu, F. (2016). Dielectric properties of calcium phosphate ceramics. Materials Science, 22, 65–69.

    Google Scholar 

  176. Silva, C. C., Graça, M. P. F., Sombra, A. S. B., & Valente, M. A. (2009). Structural and electrical study of calcium phosphate obtained by a microwave radiation assisted procedure. Physical B: Condensed Matter, 404, 1503–1508.

    Google Scholar 

  177. Lyczko, N., Nzihou, A., & Sharrok, P. (2014). Calcium phosphate sorbent for environmental application. Procedia Engineering, 83, 423–431.

    Google Scholar 

  178. Lemlikchi, W., Sharrock, P., Mecherri, M. O., Fiallo, M., & Nzihou, A. (2012). Treatment of textile waste waters by hydroxyapatite co-precipitation with adsorbent regeneration and reuse. Waste Biomass Valorization, 3, 75–79.

    Google Scholar 

  179. Salama, A. (2019). Cellulose/calcium phosphate hybrids: New materials for biomedical and environmental applications. International Journal of Biological Macromolecules, 127, 606–617.

    Google Scholar 

Download references

Acknowledgements

The authorsgratefully acknowledge the National Institute of Technology (NIT), Arunachal Pradesh, India, for the assistance and support.

Funding

This study received financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, India (project grant no. 22(0847)/20/EMR-II, dated: 10.12.2020).

Author information

Authors and Affiliations

Authors

Contributions

Conception: Nabakumar Pramanik.

Literature survey: Abinash Das, and Togam Ringu.

Images and table design: Abinash Das, and Togam Ringu.

Manuscript composition and referencing: Abinash Das, Togam Ringu, Sampad Ghosh, and Nabakumar Pramanik.

Manuscript moderation and design: Abinash Das, Sampad Ghosh, and Nabakumar Pramanik.

Edit and correction: Sampad Ghosh and Nabakumar Pramanik.

Corresponding author

Correspondence to Nabakumar Pramanik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Ghosh, S., Ringu, T. et al. A Focus on Biomaterials Based on Calcium Phosphate Nanoparticles: an Indispensable Tool for Emerging Biomedical Applications. BioNanoSci. 13, 795–818 (2023). https://doi.org/10.1007/s12668-023-01081-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01081-6

Keywords

Navigation