Skip to main content

Advertisement

Log in

Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Granular shape biphasic calcium phosphate (BCP) bone grafts with and without doping of silicon cations were evaluated in regards to biocompatibility and MG-63 cellular response. To do this we studied Cellular cytotoxicity, cellular adhesion and spreading behavior and cellular differentiation with alizarin red S staining. Gene expression in MG-63 cells on the implanted bone substitutes was also examined at different time points using RT-PCR. In comparison, the Si-doped BCP granule showed more cellular viability than the BCP granule without doping in MTT assay. Moreover, cell proliferation was much higher when Si doping was employed. The cells grown on the silicon-doped BCP substitutes had more active filopodial growth with cytoplasmic webbing that proceeded to the flattening stage, which was indicative of well cellular adhesion. When these cells were exposed to Si-doped BCP granules for 14 days, well differentiated MG-63 cells were observed. Osteonectin and osteopontin genes were highly expressed in the late stage of differentiation (14 days), whereas collagen type I mRNA were found to be highly expressed during the early stage (day 3). These combined results of this study demonstrate that silicon-doped BCP enhanced osteoblast attachment/spreading, proliferation, differentiation and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  CAS  PubMed  Google Scholar 

  2. Oonishi H. Orthopaedic applications of hydroxyapatite. Biomaterials. 1991;12:171–8.

    Article  CAS  PubMed  Google Scholar 

  3. Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  CAS  PubMed  Google Scholar 

  4. Chu T-MG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002;23:1283–93.

    Article  CAS  PubMed  Google Scholar 

  5. Mastrogiacoma M, Muraglia A, Komlev V, Peryin F, Rustichelli F, Crovace A, et al. Tissue engineering of bone: search for a better scaffold. Orthodont Craniofac Res. 2005;8:277–84.

    Article  Google Scholar 

  6. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  7. Buma P, Van Loon PJM, Versleyen H, Weinans H, Slooff TJJH, De Groot K, et al. Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite-coated intramedullary implants of different stiffness: a pilot study on the goat. Biomaterials. 1997;18:1251–60.

    Article  CAS  PubMed  Google Scholar 

  8. Van Landuyt P, Li F, Keustermans JP, Streydio JM, Delannay F, Munting E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J Mater Sci: Mater Med. 1995;6:8–13.

    Article  Google Scholar 

  9. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17:31–5.

    Article  CAS  PubMed  Google Scholar 

  10. Gauthier O, Goyenvalle E, Bouler JM, Guicheus J, Pilet P, Weiss P, et al. Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci: Mater Med. 2001;12:385–90.

    Article  CAS  Google Scholar 

  11. Yuan H, Yang Z, Bruijn JD, Groot K, Zhang X. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials. 2001;22:2617–23.

    Article  CAS  PubMed  Google Scholar 

  12. Piattelli A, Scarano A, Mangano C. Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement. Biomaterials. 1996;17:1767–70.

    Article  CAS  PubMed  Google Scholar 

  13. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    Article  CAS  PubMed  Google Scholar 

  14. Elliot J. Structure and chemistry of the apatites and other calcium orthophosphates. New York: Elsevier; 1994.

    Google Scholar 

  15. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  CAS  PubMed  Google Scholar 

  16. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Carlisle EM. A silicon requirement for normal skull formation in chicks. J Nutr. 1980;110(2):352–9.

    CAS  PubMed  Google Scholar 

  18. Carlisle EM. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr. 1980;110:1046–56.

    CAS  PubMed  Google Scholar 

  19. Alexandra EP. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron. 2006;37:681–8.

    Article  Google Scholar 

  20. Gao T, Aro HT, Ylänen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials. 2001;22:1475–83.

    Article  CAS  PubMed  Google Scholar 

  21. Reffitt DM, Ogston N, Jugdoahsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.

    Article  CAS  PubMed  Google Scholar 

  22. Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W. Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. Key Eng Mater. 2004;254:869–72.

    Article  Google Scholar 

  23. Ni S, Chang J, Chou L, Zhai W. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res. 2006;80B:174–83.

    Article  Google Scholar 

  24. Patel N, Best SM, Bonfield W. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Biomed Mater Res. 2002;69:1199–206.

    Google Scholar 

  25. Patel N, Brooks RA, Clarke MT, Lee PMT, Rushton N, Gibson IR, et al. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J Biomed Mater Res. 2005;16:429–40.

    CAS  Google Scholar 

  26. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27:5014–26.

    Article  CAS  PubMed  Google Scholar 

  27. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  CAS  PubMed  Google Scholar 

  28. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD. Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci: Mater Med. 2002;13:1123–7.

    Article  CAS  Google Scholar 

  29. Balas F, Perez-Pariente J, Vallet-Regi M. In vivo bioactivity of silicon substituted hydroxyapatites. J Biomed Mater Res. 2003;66A:364–75.

    Article  CAS  Google Scholar 

  30. Popovic’ D, Halloran JW, Hilmas GE, Brady GA, Somas S, Barda A, Zywicki G, Process for preparing textured ceramic composites, U.S. Patent 5645781.1997.

  31. Baskaran S, Nunn S, Popovic’ D, Halloran JW. Fibrous monolithic ceramics: I, fabrication, microstructure and indentation behavior. J Am Ceram Soc. 1993;76:2209–16.

    Article  CAS  Google Scholar 

  32. Lee B-T, Sarkar SK, Song H-Y. Microstructure and material properties of double-network type fibrous (Al2O3–m-ZrO2)/t-ZrO2 composites. J Eur Ceram Soc. 2008;28:229–33.

    Article  CAS  Google Scholar 

  33. Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res. 1990;18:131–6.

    Article  CAS  PubMed  Google Scholar 

  34. International standard 1999. Biological evaluation of medical devices. Part 5: Test for in vitro cytotoxicity. ISO-10993-5;1999 (E).

  35. Patel N, Brooks RA, Clarke MT, Lee PMT, Rushton N, Gibson IR, et al. In vivo assessment of hydroxyapatite and silicate-substituted granules using an ovine model. J Mater Sci: Mater Med. 2005;16:429–40.

    Article  CAS  Google Scholar 

  36. Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ. Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res. 1997;37:508–16.

    Article  CAS  PubMed  Google Scholar 

  37. Pioletti DP, Muller J, Rakotomanana LR. Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. Biomechanics. 2003;36:131–5.

    Article  Google Scholar 

  38. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res. 1998;40:324–35.

    Article  CAS  PubMed  Google Scholar 

  39. Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res. 2000;49:362–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bigerelle M, Anselme K, Dufresne E. An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion. Biomol Eng. 2002;19:79–83.

    Article  CAS  PubMed  Google Scholar 

  41. Xu L, Khor KA. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J Inorg Biochem. 2007;101:187–95.

    Article  CAS  PubMed  Google Scholar 

  42. Rajaraman R, Rounds DE, Yen SPS, Rembaum A. A scanning electron microscope study of cell adhesion and spreading in vitro. Exp Cell Res. 1974;88:327–39.

    Article  CAS  PubMed  Google Scholar 

  43. Grinnell F, Milam M, Srere PA. Studies on cell adhesion. III. Adhesion of baby hamster kidney cells. J Cell Biol. 1973;56:659.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor AC. Attachment and spreading of cells in culture. Exp Cell Res. 1961;8:154–73.

    Article  PubMed  Google Scholar 

  45. Lajeunesse D, Frondoza C, Schoffield B, Sacktor B. Osteocalcin secretion by the human osteosarcoma cell line MG63. J Bone Miner Res. 1990;5:915–22.

    Article  CAS  PubMed  Google Scholar 

  46. Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol. 2004;228:79–102.

    Article  CAS  PubMed  Google Scholar 

  47. Thian ES, Huang J, Best SM, Barber ZH, Bonefield W. Magnetron co-sputtered silicon-containing hydroxyapatite thin filmsan in vitro study. Biomaterials. 2005;26(16):2947–56.

    Article  CAS  PubMed  Google Scholar 

  48. Bohner M. Silicon-substituted calcium phosphates—a critical view. Biomaterials. 2009;30:6403–6.

    Article  CAS  PubMed  Google Scholar 

  49. Deluca PP, Schrier JA. Recombinant human bone morphogenetic protein-2 binding and incorporation in PLGA microsphere delivery systems. Pharm Dev Technol. 1999;4:611–21.

    Article  PubMed  Google Scholar 

  50. De la Piedra GC, Jiménez RT. Usefulness of bone remodelling biochemical markers in the diagnosis and follow-up of Paget’s bone disease, primary hyperparathyroidism, tumor hypercalcemia, and postmenopausal osteoporosis. II. Bone resorption markers. An Med Intern. 1990;7:534–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Yeon Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, IS., Sarkar, S.K., Anirban Jyoti, M. et al. Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute. J Mater Sci: Mater Med 21, 1937–1947 (2010). https://doi.org/10.1007/s10856-010-4061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4061-1

Keywords

Navigation