Skip to main content

Advertisement

Log in

Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanometer size biphasic calcium phosphate (BCP) powders with various Ca/P molar ratios satisfied with appropriate phase ratios of HA/β-TCP were prepared by high temperature flame spray pyrolysis process. The BCP powders had spherical shapes and narrow size distributions irrespective of the ratios of Ca/P. The mean size of the BCP powders measured from the TEM image was 38 nm. The composition ratio of Ca/P was controlled from 1.500 to 1.723 in the spray solution, and required phase ratios of HA/TCP are controlled systematically. The calcium dissolution of the pellets obtained from the BCP powders directly prepared by flame spray pyrolysis in buffer solution increased with the decrease of Ca/P ratios except with the Ca/P ratio of 1.713. The pellet surface with Ca/P ratio of 1.500, which consisted of β-TCP, was eroded dramatically for 7 days. On the other hand, the pellet surface with Ca/P ratio of 1.667 was stable and did not disintegrate after immersion in Tris–HCl buffer solution based on the SEM observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jarcho M. Biomaterial aspects of calcium phosphates. Properties and applications. Dent Clin North Am. 1986;30:25–47.

    CAS  PubMed  Google Scholar 

  2. Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM.  Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med. 1999;10:169–76.

    Article  CAS  PubMed  Google Scholar 

  3. Oonishi H. Orthopaedic applications of hydroxyapatite. Biomater. 1991;12:171–8.

    Article  CAS  Google Scholar 

  4. Lange DG, Putter DC. Structure of the bone interface to dental implants in vivo. J Oral Implantol. 1993;19:136–7.

    Google Scholar 

  5. Groot KD. Macroport tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomater. 1986;7:137–44.

    Article  Google Scholar 

  6. Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res. 1987;5:356–65.

    Article  CAS  PubMed  Google Scholar 

  7. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomater. 1998;19:1473–8.

    Article  CAS  Google Scholar 

  8. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  CAS  Google Scholar 

  9. Piattelli A, Scarano A, Mangano C. Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement. Biomater. 1996;17:1767–70.

    Article  CAS  Google Scholar 

  10. Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett. 2007;61:3978–83.

    Article  CAS  Google Scholar 

  11. Zhou ZH, Zhou PL, Yang SP, Yu XB, Yang LZ. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater Res Bull. 2007;42:1611–8.

    Article  CAS  Google Scholar 

  12. Zhang X, Vecchio KS. Hydro-thermal synthesis of hydroxyapatite rods. J Cryst Growth. 2007;306:133–40.

    Article  ADS  Google Scholar 

  13. Kannan S, Rocha JHG, Agathopoulos S, Ferreira JMF. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 2007;3:243–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang A, Liu D, Yin H, Wu H, Wada Y, Ren M, et al. Size-controlled synthesis of hydroxyapatite nanorods by chemical. Precipitation in the presence of organic modifiers. Mater Sci Eng C. 2007;27:865–9.

    Article  CAS  Google Scholar 

  15. Wang A, Yin H, Liu D, Wu H, Ren M, Jiang T, et al. Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers. Mater Lett. 2007;61:2084–8.

    Article  CAS  Google Scholar 

  16. Tüyel U, Öner ET, Özyegin S, Oktar FN. Production and characterization of bioceramic nano-powders of natural-biological origin. J Biotechnol. 2007;131:S65.

    Article  Google Scholar 

  17. Yoshimura M, Suda H, Okamoto K, Ioku K. Hydrothemal synthesis of biocompatible whiskers. J Mater Sci. 1994;29:3399–402.

    Article  CAS  ADS  Google Scholar 

  18. Eshtiagh-Hosseini H, Housaindokht MR, Chahkandi M. Effects of parameters of sol-gel process on the phase evolution of sol-gel-derived hydroxyapatite. Mater Chem Phys. 2007;106:310–6.

    Article  CAS  Google Scholar 

  19. Lin K, Chang J, Cheng R, Ruan M. Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater Lett. 2007;61:1683–7.

    Article  CAS  Google Scholar 

  20. Cao L, Zhang C, Huang J. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Inter 2005;31:1041.

    Article  CAS  Google Scholar 

  21. Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ. Research article osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography. J Biomed Mater Res A 2003;67:1284.

    Article  PubMed  Google Scholar 

  22. Price RL, Ellison K, Haberstroh KM, Webster TJ. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A. 2004;70:129–38.

    Article  PubMed  Google Scholar 

  23. Washburn NR, Yamada KM, Simon CG, Kennedy SB, Amis EJ. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomater. 2004;25:1215–24.

    Article  CAS  Google Scholar 

  24. Wan YQ, Wang Y, Liu ZM, Qu X, Han BX, Bei JZ, et al. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomater. 2005;26:4453–9.

    Article  CAS  Google Scholar 

  25. Nilen RWN, Richter PW. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci Mater Med. 2008;19:1693–702.

    Article  CAS  Google Scholar 

  26. Kannan S, Rocha JHG, Ventura JMG, Lemos AF, Ferreira JMF. Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics—an X-ray diffraction study. Scr Mater. 2005;53:1259–62.

    Article  CAS  Google Scholar 

  27. Lee BT, Youn MH, Paul RK, Lee KH, Song HY. In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater Chem Phys. 2007;104:249–53.

    Article  CAS  ADS  Google Scholar 

  28. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio. I. Synthesis, characterisation and thermal stability of powders. Biomater. 2002;23:1065–72.

    Article  CAS  Google Scholar 

  29. Yasuda HY, Mahara S, Nishiyama T, Umakoshi Y. Preparation of hydroxyapatite/α-tricalcium phosphate composites by colloidal process. Sci Tech Adv Mater. 2002;3:29–33.

    Article  CAS  Google Scholar 

  30. Cho JS, Kang YC. Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloy Compd. 2008;464:282–7.

    Article  CAS  Google Scholar 

  31. Ana GH, Wanga HJ, Kim BH, Jeong YG, Choa YH. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater Sci Eng A. 2007;449:821.

    Article  Google Scholar 

  32. Haman JD, Lucas LC, Crawmer D. Characterization of high velocity oxy-fuel combustion sprayed hydroxyapatite. Biomater. 1995;16:229–37.

    Article  CAS  Google Scholar 

  33. Vallet-Regi M, Rodriguez-Lorenzo LM, Salinas AJ. Synthesis and characterisation of calcium deficient apatite. Solid State Ionics. 1997;101–103:1278.

    Article  Google Scholar 

  34. Victor SP, Sampath Kumar TS. BCP ceramic microspheres as drug delivery carriers: synthesis, characterisation and doxycycline release. J Mater Sci Mater Med. 2008;19:283–90.

    Article  CAS  Google Scholar 

  35. Pena J, Vallet-Regi M. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc. 2003;23:1687–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chan Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J.S., Ko, Y.N., Koo, H.Y. et al. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J Mater Sci: Mater Med 21, 1143–1149 (2010). https://doi.org/10.1007/s10856-009-3980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3980-1

Keywords

Navigation