Skip to main content
Log in

Correlation of hydrolytic degradation with structure for copolyesters produced from glycolic and adipic acids

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Copolyesters based on glycolic acid (G) combined with adipic acid (A) and ethylene glycol (E) were synthesized in different percentage of molar ratios (A: 100–50% and G: 100%) and their hydrolytic degradation was studied and correlated with their structures. According to the DSC, the production of polyesters leads to the formation of copolyesters and not to mixtures of homopolyesters. The crystallites in the copolyesters mainly consist of continuous sequences of ethylene adipate structural units. The hydrolytic degradation of the polyesters was followed by their weight loss during hydrolysis and by the FTIR spectra of the initial polyesters compared with that of the degraded polyesters at equilibrium. The region between 1142 and 800 cm−1 can be utilized to evaluate the extent of degradation of polyesters after their hydrolysis. The absorption bands at 1142, 1077 and 850 cm−1 due to the amorphous region decrease after hydrolysis, whereas those at 972, 901 and 806 cm−1 due to the crystalline region increase. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model, which describes very well mainly the initial part of the degradation, and four-parameter model (containing two exponential terms), which is appropriate for fitting the hydrolytic degradation on the entire time period (including the equilibrium). Furthermore, the kinetics of the hydrolytic degradation of the polyesters for the initial time period based on both models results to similar values of the rate constant, k. The synthesized copolyesters of glycolic acid combined with adipic acid and ethylene glycol are soluble in many common organic solvents opposite to PGA, leading to modified biodegradable polyesters and therefore they can be easily processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaska J, Lesek F. Processes and equipment for alkyd and unsaturated polyester resin manufacture. Prog Org Coat. 1991;19:283–331.

    Article  CAS  Google Scholar 

  2. Malik M, Choudhary V, Varma IK. Current status of unsaturated polyester resins. JMS-Rev Macromol Chem Phys. 2000;C40:139–65.

    CAS  Google Scholar 

  3. Simitzis J, Zoumpoulakis L, Soulis S. Review of the research results concerning the synthesis, curing, structure and properties of unsaturated polyesters. Current Trends Polym Sci. 2003;8:107–25.

    CAS  Google Scholar 

  4. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  5. Kumar N, Ezra A, Ehrenfroid T, Krasko MY, Domb AG. Biodegraded polymers, medical applications. In: Encyclopedia of polymer science and technology (Vol. 5). New York: Wiley; 2003. pp. 263–285.

  6. Vert M. Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. J Mater Sci Mater Med. 2009;20:437–46.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  8. Vey E, Roger C, Meehan L, Booth J, Claybourn M, Miller AF, et al. Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Pol Degr Stab. 2008;93:1869–76.

    Article  CAS  Google Scholar 

  9. Montes De Oca H, Ward IM, Chivers RA, Farrar DF. Structure development during crystallization of solid-state processing of poly(glycolic acid). J Appl Polym Sci. 2009;111:1013–8.

    Article  CAS  Google Scholar 

  10. Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab. 1998;59:145–52.

    Article  CAS  Google Scholar 

  11. Montes de Oca H, Ward IM. Structure and mechanical properties of PGA crystals and fibres. Polymer. 2006;47:7070–7.

    Article  CAS  Google Scholar 

  12. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998;14:726–37.

    Article  CAS  PubMed  Google Scholar 

  13. Nair LS, Laurencin CT. Biodegredable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  14. Kiss E, Vargha-Butler EI. Novel method to characterize the hydrolytic decomposition of biopolymer surfaces. Coll Surf B. 1999;15:181–93.

    Article  CAS  Google Scholar 

  15. Chan CK, Chu IM. Crystalline and dynamic mechanical behaviours of synthesized poly(sebacic anhydride-co-ethylene glycol). Biomaterials. 2003;24:47–54.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Chang J. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Comp Sci Technol. 2005;65:2226–32.

    Article  CAS  Google Scholar 

  17. Agrawal A, Saran AD, Rath SS, Khanna A. Constrained nonlinear optimization for solubility parameters of poly(lactic acid) and poly(glycolic acid)-validation and comparison. Polymer. 2004;45:8603–12.

    Article  CAS  Google Scholar 

  18. Loo JSC, Ooi CP, Boey FYC. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials. 2005;26:1359–67.

    Article  CAS  PubMed  Google Scholar 

  19. Van Nostrum CF, Velduis TFJ, Bos GW, Hennink WE. Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. Polymer. 2004;45:6779–87.

    Article  CAS  Google Scholar 

  20. Kim MN, Kim KH, Jim HJ, Park JK, Yoon JS. Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur Pol J. 2001;37:1843–7.

    Article  CAS  Google Scholar 

  21. Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, et al. The influence of lactic on the properties of poly (glycerol-sebacate-lactic acid). Mat Sci Eng C. 2009;29:178–82.

    Article  CAS  Google Scholar 

  22. Bruggeman JP, Bruin BJ, Bettinger CJ, Langer R. Biodegradable poly(polyol sebacate) polymers. Biomaterials. 2008;29:4726–35.

    Article  CAS  PubMed  Google Scholar 

  23. Pomakis I, Simitzis J. A new method to control the polyesterification process. Prospects of application in the production plants. Angew Makromol Chem. 1981;99:145–70.

    Article  CAS  Google Scholar 

  24. Simitzis J, Zoumpoulakis L, Soulis S, Mendrinos L. Influence of residual polyesterification catalysts on the curing of polyesters. Mikrochim Acta. 2001;136:171–4.

    CAS  Google Scholar 

  25. DeLassus PT, Whiteman NF. Physical and mechanical properties of some important polymers. In: Braundrup J, Immergut EH, Grulke EA, editors. Polymer handbook. 4th ed. New York: Wiley Interscience; 1999. pp. VI-5, 6, 41, 44.

  26. Cohn D, Younes H, Marom G. Amorphous and crystalline morphologies in glycolic acid and lactic acid polymers. Polymer. 1987;28:2018–22.

    Article  CAS  Google Scholar 

  27. Nakafuku C, Yoshimura H. Melting parameters of poly(glycolic acid). Polymer. 2004;45:3583–5.

    Article  CAS  Google Scholar 

  28. Ebewele RO. Polymer science and technology. Boca Raton: CRC Press; 1996. p. 77–81.

    Google Scholar 

  29. Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998. p. 79–99.

    Google Scholar 

  30. Williams DH, Fleming I. Spektroskopische Methoden in der organischen Chemie. Stuttgart: Georg Thieme Verlag; 1971. p. 44–53.

    Google Scholar 

  31. Chu CC. Biodegradable polymeric biomaterials: an overview. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton: CRC Press; 1995. p. 611–23.

    Google Scholar 

  32. Blomqvist J, Mannfors B, Pietilä LO. Amorphous cell studies of polyglycolic, poly(L-lactic), poly(L, D-lactic) and poly(glycolic/L-lactic) acids. Polymer. 2002;43:4571–83.

    Article  CAS  Google Scholar 

  33. Entemann G. Abbaure Kunstoffe aus Milchsaeure. In: Pfeil A, editor. Biologisch abbaubare Kunstoffe. Essligen: Expert Verlag; 1994. p. 91–101.

    Google Scholar 

  34. Fitzer E. Technische Chemie. Berlin: Springer; 1975. pp. 367, 459.

  35. Levenspiel O. Chemical reaction engineering. 2nd ed. New York: Wiley; 1972. p. 6.

    Google Scholar 

  36. Schmitt EA, Flanagan DR, Lindhardt RJ. Importance of distinct water environments in the hydrolysis of poly(DL-lactide-co-glycolide). Macromolecules. 1994;27:743–8.

    Article  CAS  ADS  Google Scholar 

  37. Kenley RA, Lee MO, Mahoney TR, Sanders LM. Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules. 1987;20:2398–403.

    Article  CAS  ADS  Google Scholar 

  38. Belan F, Bellenger V, Mortaigne B, Verdu J. Relationship between the structure and hydrolysis rate of unsaturated polyester prepolymers. Polym Degr Stab. 1997;56:301–9.

    Article  CAS  Google Scholar 

  39. Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y. Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degr Stabil. 1998;59:327–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. A. Vgenopoulos of the School of Mining Engineering and Metallurgy for kindly helping for FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Simitzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simitzis, J., Triantou, D., Soulis, S. et al. Correlation of hydrolytic degradation with structure for copolyesters produced from glycolic and adipic acids. J Mater Sci: Mater Med 21, 1069–1079 (2010). https://doi.org/10.1007/s10856-009-3951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3951-6

Keywords

Navigation